

AoPS Community

1975 Vietnam National Olympiad

Vietnam National Olympiad 1975

www.artofproblemsolving.com/community/c702064 by parmenides51, huyvietnam, Amir Hossein

-	Day 1
1	The roots of the equation $x^3 - x + 1 = 0$ are a, b, c . Find $a^8 + b^8 + c^8$.
2	Solve this equation $\frac{y^3+m^3}{(y+m)^3} + \frac{y^3+n^3}{(y+n)^3} + \frac{y^3+p^3}{(y+p)^3} - \frac{3}{2} + \frac{3}{2} \cdot \frac{y-m}{y+m} \cdot \frac{y-n}{y+n} \cdot \frac{y-p}{y+p} = 0$
3	Let $ABCD$ be a tetrahedron with $BA \perp AC$, $DB \perp (BAC)$. Denote by O the midpoint of AB , and K the foot of the perpendicular from O to DC . Suppose that $AC = BD$. Prove that $\frac{V_{KOAC}}{V_{KOBD}} = \frac{AC}{BD}$ if and only if $2AC \cdot BD = AB^2$.
-	Day 2
4	Find all terms of the arithmetic progression $-1, 18, 37, 56, \dots$ whose only digit is 5.
5	Show that the sum of the (local) maximum and minimum values of the function $\frac{tan(3x)}{tan^3x}$ on the interval $(0, \frac{\pi}{2})$ is rational.
6	Let us have a line ℓ in the space and a point A not lying on ℓ . For an arbitrary line ℓ' passing through A , XY (Y is on ℓ') is a common perpendicular to the lines ℓ and ℓ' . Find the locus of points Y .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱 🙀