AoPS Community

Vietnam National Olympiad 1972
www.artofproblemsolving.com/community/c702066
by parmenides51

1 Let α be an arbitrary angle and let $x=\cos \alpha, y=\cos n \alpha(n \in Z)$.
i) Prove that to each value $x \in[-1,1]$ corresponds one and only one value of y.

Thus we can write y as a function of $x, y=T_{n}(x)$.
Compute $T_{1}(x), T_{2}(x)$ and prove that $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$.
From this it follows that $T_{n}(x)$ is a polynomial of degree n.
ii) Prove that the polynomial $T_{n}(x)$ has n distinct roots in $[-1,1]$.
$3 \quad A B C$ is a triangle. U is a point on the line $B C . I$ is the midpoint of $B C$. The line through C parallel to $A I$ meets the line $A U$ at E. The line through E parallel to $B C$ meets the line $A B$ at F. The line through E parallel to $A B$ meets the line $B C$ at H. The line through H parallel to $A U$ meets the line $A B$ at K. The lines $H K$ and $F G$ meet at $T . V$ is the point on the line $A U$ such that A is the midpoint of $U V$. Show that V, T and I are collinear.

4 Let $A B C D$ be a regular tetrahedron with side a. Take E, E^{\prime} on the edge $A B, F, F^{\prime}$ on the edge $A C$ and G, G^{\prime} on the edge AD so that $A E=a / 6, A E^{\prime}=5 a / 6, A F=a / 4, A F^{\prime}=3 a / 4, A G=$ $a / 3, A G^{\prime}=2 a / 3$. Compute the volume of $E F G E^{\prime} F^{\prime} G^{\prime}$ in term of a and find the angles between the lines $A B, A C, A D$ and the plane $E F G$.

