AoPS Community

Vietnam National Olympiad 1976
www.artofproblemsolving.com/community/c702079
by parmenides51

- Day 1

1 Find all integer solutions to $m^{m+n}=n^{12}, n^{m+n}=m^{3}$.
2 Find all triangles $A B C$ such that $\frac{a \cos A+b \cos B+c \cos C}{a \sin A+b \sin B+c \sin C}=\frac{a+b+c}{9 R}$, where, as usual, a, b, c are the lengths of sides $B C, C A, A B$ and R is the circumradius.
$3 \quad P$ is a point inside the triangle $A B C$. The perpendicular distances from P to the three sides have product p. Show that $p \leq \frac{8 S^{3}}{27 a b c}$, where $S=$ area $A B C$ and a, b, c are the sides. Prove a similar result for a tetrahedron.

- Day 2
$4 \quad$ Find all three digit integers $\overline{a b c}=n$, such that $\frac{2 n}{3}=a!b!c!$
$5 L, L^{\prime}$ are two skew lines in space and p is a plane not containing either line. M is a variable line parallel to p which meets L at X and L^{\prime} at Y. Find the position of M which minimises the distance $X Y$. $L^{\prime \prime}$ is another fixed line. Find the line M which is also perpendicular to $L^{\prime \prime}$.

6 Show that $\frac{1}{x_{1}^{n}}+\frac{1}{x_{2}^{n}}+\ldots+\frac{1}{x_{k}^{n}} \geq k^{n+1}$ for positive real numbers x_{i} with sum 1 .

