AoPS Community

Serbia and Montenegro Team Selection Test 2003

www.artofproblemsolving.com/community/c705047
by massnet, elegant

1 If $p(x)$ is a polynomial, denote by $p^{n}(x)$ the polynomial $p(p(\ldots(p(x))$..), where p is iterated n times. Prove that the polynomial $p^{2003}(x)-2 p^{2002}(x)+p^{2001}(x)$ is divisible by $p(x)-x$

2 Let M and N be the distinct points in the plane of the triangle ABC such that $\mathrm{AM}: \mathrm{BM}: \mathrm{CM}=$ $A N: B N: C N$. Prove that the line MN contains the circumcenter of $A B C$.

3 Each edge and each diagonal of the convex n-gon $(n \geq 3)$ is colored in red or blue. Prove that the vertices of the n-gon can be labeled as $A_{1}, A_{2}, \ldots, A_{n}$ in such a way that one of the following two conditions is satisfied:
(a) all segments $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}, A_{n} A_{1}$ are of the same colour.
(b) there exists a number $k, 1<k<n$ such that the segments $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{k-1} A_{k}$ are blue, and the segments $A_{k} A_{k+1}, \ldots, A_{n-1} A_{n}, A_{n} A_{1}$ are red.

