Art of Problem Solving

AoPS Community

Czech and Slovak Match 1995

www.artofproblemsolving.com/community/c705957
by parmenides51, tdl, thang 1308

- Day 1

1 Let $a_{1}=2, a_{2}=5$ and $a_{n+2}=\left(2-n^{2}\right) a_{n+1}+\left(2+n^{2}\right) a_{n}$ for $n \geq 1$. Do there exist p, q, r so that $a_{p} a_{q}=a_{r}$?

2 Find all pairs of functions $f, g: Z \rightarrow Z$ that satisfy $f(g(x)+y)=g(f(y)+x)$ for all integers x, y and such that $g(x)=g(y)$ only if $x=y$.

3 Consider all triangles $A B C$ in the cartesian plane whose vertices are at lattice points (i.e. with integer coordinates) and which contain exactly one lattice point (to be denoted P) in its interior. Let the line $A P$ meet $B C$ at E. Determine the maximum possible value of the ratio $\frac{A P}{P E}$.

- Day 2

4 For each real number $p>1$, find the minimum possible value of the sum $x+y$, where the numbers x and y satisfy the equation $\left(x+\sqrt{1+x^{2}}\right)\left(y+\sqrt{1+y^{2}}\right)=p$.

5 The diagonals of a convex quadrilateral $A B C D$ are orthogonal and intersect at point E. Prove that the reflections of E in the sides of quadrilateral $A B C D$ lie on a circle.

6 Find all triples $(x ; y ; p)$ of two non-negative integers x, y and a prime number p such that $p^{x}-$ $y^{p}=1$

