

AoPS Community

1995 Czech and Slovak Match

Czech and Slovak Match 1995

www.artofproblemsolving.com/community/c705957 by parmenides51, tdl, thang1308

-	Day 1
1	Let $a_1 = 2, a_2 = 5$ and $a_{n+2} = (2 - n^2)a_{n+1} + (2 + n^2)a_n$ for $n \ge 1$. Do there exist p, q, r so that $a_p a_q = a_r$?
2	Find all pairs of functions $f, g: Z \to Z$ that satisfy $f(g(x) + y) = g(f(y) + x)$ for all integers x, y and such that $g(x) = g(y)$ only if $x = y$.
3	Consider all triangles ABC in the cartesian plane whose vertices are at lattice points (i.e. with integer coordinates) and which contain exactly one lattice point (to be denoted P) in its interior. Let the line AP meet BC at E . Determine the maximum possible value of the ratio $\frac{AP}{PE}$.
-	Day 2
4	For each real number $p > 1$, find the minimum possible value of the sum $x + y$, where the numbers x and y satisfy the equation $(x + \sqrt{1 + x^2})(y + \sqrt{1 + y^2}) = p$.
5	The diagonals of a convex quadrilateral $ABCD$ are orthogonal and intersect at point E . Prove that the reflections of E in the sides of quadrilateral $ABCD$ lie on a circle.
6	Find all triples $(x; y; p)$ of two non-negative integers x, y and a prime number p such that $p^x - y^p = 1$

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱