

AoPS Community

1996 Czech and Slovak Match

Czech and Slovak Match 1996

www.artofproblemsolving.com/community/c705967 by parmenides51, carlosbr

-	Day 1
1	Show that an integer $p > 3$ is a prime if and only if for every two nonzero integers a, b exactly one of the numbers $N_1 = a + b - 6ab + \frac{p-1}{6}$, $N_2 = a + b + 6ab + \frac{p-1}{6}$ is a nonzero integer.
2	Let be a binary operation on a nonempty set M . That is, every pair $(a, b) \in M$ is assigned an element $a b$ in M . Suppose that has the additional property that $(a \ b) b = a$ and $a \ (a \ b) = b$ for all $a, b \in M$. (a) Show that $a \ b = b \ a$ for all $a, b \in M$. (b) On which finite sets M does such a binary operation exist?
3	The base of a regular quadrilateral pyramid π is a square with side length $2a$ and its lateral edge has length $a\sqrt{17}$. Let M be a point inside the pyramid. Consider the five pyramids which are similar to π , whose top vertex is at M and whose bases lie in the planes of the faces of π . Show that the sum of the surface areas of these five pyramids is greater or equal to one fifth the surface of π , and find for which M equality holds.
-	Day 2
4	Decide whether there exists a function $f : Z \to Z$ such that for each $k = 0, 1,, 1996$ and for any integer m the equation $f(x) + kx = m$ has at least one integral solution x .
5	Two sets of intervals A, B on the line are given. The set A contains $2m - 1$ intervals, every two of which have an interior point in common. Moreover, every interval from A contains at least two disjoint intervals from B . Show that there exists an interval in B which belongs to at least m intervals from A .
6	The points <i>E</i> and <i>D</i> lie in the interior of sides <i>AC</i> and <i>BC</i> , respectively, of a triangle <i>ABC</i> . Let <i>F</i> be the intersection of the lines <i>AD</i> and <i>BE</i> . Show that the area of the traingles <i>ABC</i> and <i>ABF</i> satisfies:

 $\tfrac{S_{ABC}}{S_{ABF}} = \tfrac{|AC|}{|AE|} + \tfrac{|BC|}{|BD|} - 1.$

Art of Problem Solving is an ACS WASC Accredited School.

🟟 AoPS Online 🟟 AoPS Academy 🐲 AoPS 🗱

1