

AoPS Community

1998 Czech and Slovak Match

Czech and Slovak Match 1998

www.artofproblemsolving.com/community/c705969 by parmenides51

-	Day 1
1	Let <i>P</i> be an interior point of the parallelogram <i>ABCD</i> . Prove that $\angle APB + \angle CPD = 180^{\circ}$ if and only if $\angle PDC = \angle PBC$.
2	A polynomial $P(x)$ of degree $n \ge 5$ with integer coefficients has n distinct integer roots, one of which is 0. Find all integer roots of the polynomial $P(P(x))$.
3	Let $ABCDEF$ be a convex hexagon such that $AB = BC, CD = DE, EF = FA$. Prove that $\frac{BC}{BE} + \frac{DE}{DA} + \frac{FA}{FC} \ge \frac{3}{2}$. When does equality occur?
-	Day 2
4	Find all functions $f:N\to N-\{1\}$ satisfying $f(n)+f(n+1)=f(n+2)+f(n+3)-168$ for all $n\in N$.
5	In a triangle <i>ABC</i> , <i>T</i> is the centroid and $\angle TAB = \angle ACT$. Find the maximum possible value of $sin\angle CAT + sin\angle CBT$.
6	In a summer camp there are n girls $D_1, D_2,, D_n$ and $2n - 1$ boys $C_1, C_2,, C_{2n-1}$. The girl $D_i, i = 1, 2,, n$, knows only the boys $C_1, C_2,, C_{2i-1}$. Let $A(n, r)$ be the number of different ways in which r girls can dance with r boys forming r pairs, each girl with a boy she knows. Prove that $A(n, r) = {n \choose r} \frac{r!}{(n-r)!}$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱