Art of Problem Solving

AoPS Community

Czech and Slovak Match 1998

www.artofproblemsolving.com/community/c705969
by parmenides51

- Day 1

1 Let P be an interior point of the parallelogram $A B C D$. Prove that $\angle A P B+\angle C P D=180^{\circ}$ if and only if $\angle P D C=\angle P B C$.

2 A polynomial $P(x)$ of degree $n \geq 5$ with integer coefficients has n distinct integer roots, one of which is 0 . Find all integer roots of the polynomial $P(P(x))$.

3 Let $A B C D E F$ be a convex hexagon such that $A B=B C, C D=D E, E F=F A$. Prove that $\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{3}{2}$. When does equality occur?

- Day 2

4 Find all functions $f: N \rightarrow N-\{1\}$ satisfying $f(n)+f(n+1)=f(n+2)+f(n+3)-168$ for all $n \in N$

5 In a triangle $A B C, T$ is the centroid and $\angle T A B=\angle A C T$. Find the maximum possible value of $\sin \angle C A T+\sin \angle C B T$.

6 In a summer camp there are n girls $D_{1}, D_{2}, \ldots, D_{n}$ and $2 n-1$ boys $C_{1}, C_{2}, \ldots, C_{2 n-1}$.
The girl $D_{i}, i=1,2, \ldots, n$, knows only the boys $C_{1}, C_{2}, \ldots, C_{2 i-1}$.
Let $A(n, r)$ be the number of different ways in which r girls can dance with r boys forming r pairs,
each girl with a boy she knows.
Prove that $A(n, r)=\binom{n}{r} \frac{r!}{(n-r)!}$.

