AoPS Community

Czech and Slovak Match 1999

www.artofproblemsolving.com/community/c705975
by parmenides51, wangzishan, spider_boy

- \quad Day 1

1 Leta,b,c are postive real numbers,proof that $\frac{a}{b+2 c}+\frac{b}{c+2 a}+\frac{c}{a+2 b} \geq 1$
2 The altitudes through the vertices A, B, C of an acute-angled triangle $A B C$ meet the opposite sides at D, E, F, respectively. The line through D parallel to $E F$ meets the lines $A C$ and $A B$ at Q and R, respectively. The line $E F$ meets $B C$ at P. Prove that the circumcircle of the triangle $P Q R$ passes through the midpoint of $B C$.
$3 \quad$ Find all natural numbers k for which there exists a set M of ten real numbers such that there are exactly k pairwise non-congruent triangles whose side lengths are three (not necessarily distinct) elements of M.

- Day 2

4 Find all positive integers k for which the following assertion holds:
If $F(x)$ is polynomial with integer coefficients ehich satisfies $0 \leq F(c) \leq k$ for all $c \in\{0,1, \cdots, k+$ $1\}$, then

$$
F(0)=F(1)=\cdots=F(k+1) .
$$

$5 \quad$ Find all functions $f:(1, \infty)$ to R satisfying $f(x)-f(y)=(y-x) f(x y)$ for all $x, y>1$. you may try to find $f\left(x^{5}\right)$ by two ways and then continue the solution. I have also solved by using this method. By finding $f\left(x^{5}\right)$ in two ways I found that $f(x)=x f\left(x^{2}\right)$ for all $x>1$.

6 Prove that for any integer $n \geq 3$, the least common multiple of the numbers $1,2, \ldots, n$ is greater than 2^{n-1}.

