

AoPS Community

1999 Czech and Slovak Match

Czech and Slovak Match 1999

www.artofproblemsolving.com/community/c705975 by parmenides51, wangzishan, spider_boy

-	Day 1
1	Leta,b,c are postive real numbers,proof that $\frac{a}{b+2c} + \frac{b}{c+2a} + \frac{c}{a+2b} \ge 1$
2	The altitudes through the vertices A, B, C of an acute-angled triangle ABC meet the opposite sides at D, E, F , respectively. The line through D parallel to EF meets the lines AC and AB at Q and R , respectively. The line EF meets BC at P . Prove that the circumcircle of the triangle PQR passes through the midpoint of BC .
3	Find all natural numbers k for which there exists a set M of ten real numbers such that there are exactly k pairwise non-congruent triangles whose side lengths are three (not necessarily distinct) elements of M .
-	Day 2
4	Find all positive integers k for which the following assertion holds: If $F(x)$ is polynomial with integer coefficients ehich satisfies $0 \le F(c) \le k$ for all $c \in \{0, 1, \dots, k+1\}$, then $F(0) = F(1) = \dots = F(k+1).$
5	Find all functions $f: (1, \infty)$ to R satisfying $f(x) - f(y) = (y - x)f(xy)$ for all $x, y > 1$. you may try to find $f(x^5)$ by two ways and then continue the solution. I have also solved by using this method.By finding $f(x^5)$ in two ways I found that $f(x) = xf(x^2)$ for all $x > 1$.
6	Prove that for any integer $n \ge 3$, the least common multiple of the numbers $1, 2,, n$ is greater than 2^{n-1} .

🟟 AoPS Online 🟟 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.