AoPS Community

2000 Czech and Slovak Match

Czech and Slovak Match 2000

www.artofproblemsolving.com/community/c705981
by parmenides51

- Day 1
$1 a, b, c$ are positive real numbers which satisfy $5 a b c>a^{3}+b^{3}+c^{3}$. Prove that a, b, c can form a triangle.

2 Let $A B C$ be a triangle, k its incircle and k_{a}, k_{b}, k_{c} three circles orthogonal to k passing through B and C, A and C, and A and B respectively. The circles k_{a}, k_{b} meet again in C^{\prime}; in the same way we obtain the points B^{\prime} and A^{\prime}. Prove that the radius of the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ is half the radius of k.

3 Let n be a positive integer. Prove that n is a power of two if and only if there exists an integer m such that $2^{n}-1$ is a divisor of $m^{2}+9$.

- Day 2

4 Let $P(x)$ be a polynomial with integer coefficients. Prove that the polynomial $Q(x)=P\left(x^{4}\right) P\left(x^{3}\right) P\left(x^{2}\right) P(x)$ 1 has no integer roots.

5 Let $A B C D$ be an isosceles trapezoid with bases $A B$ and $C D$. The incircle of the triangle $B C D$ touches $C D$ at E. Point F is chosen on the bisector of the angle $D A C$ such that the lines $E F$ and $C D$ are perpendicular. The circumcircle of the triangle $A C F$ intersects the line $C D$ again at G. Prove that the triangle $A F G$ is isosceles.

6 Suppose that every integer has been given one of the colors red, blue, green, yellow. Let x and y be odd integers such that $|x| \neq|y|$. Show that there are two integers of the same color whose difference has one of the following values: $x, y, x+y, x-y$.

