

AoPS Community

2000 Czech and Slovak Match

Czech and Slovak Match 2000

www.artofproblemsolving.com/community/c705981 by parmenides51

-	Day 1
1	a, b, c are positive real numbers which satisfy $5abc > a^3 + b^3 + c^3$. Prove that a, b, c can form a triangle.
2	Let <i>ABC</i> be a triangle, <i>k</i> its incircle and k_a, k_b, k_c three circles orthogonal to <i>k</i> passing through <i>B</i> and <i>C</i> , <i>A</i> and <i>C</i> , and <i>A</i> and <i>B</i> respectively. The circles k_a, k_b meet again in <i>C'</i> ; in the same way we obtain the points <i>B'</i> and <i>A'</i> . Prove that the radius of the circumcircle of <i>A'B'C'</i> is half the radius of <i>k</i> .
3	Let n be a positive integer. Prove that n is a power of two if and only if there exists an integer m such that $2^n - 1$ is a divisor of $m^2 + 9$.
-	Day 2
4	Let $P(x)$ be a polynomial with integer coefficients. Prove that the polynomial $Q(x) = P(x^4)P(x^3)P(x^3)P(x^4)$ has no integer roots.
5	Let $ABCD$ be an isosceles trapezoid with bases AB and CD . The incircle of the triangle BCD touches CD at E . Point F is chosen on the bisector of the angle DAC such that the lines EF and CD are perpendicular. The circumcircle of the triangle ACF intersects the line CD again at G . Prove that the triangle AFG is isosceles.
6	Suppose that every integer has been given one of the colors red, blue, green, yellow. Let x and y be odd integers such that $ x \neq y $. Show that there are two integers of the same color whose difference has one of the following values: $x, y, x + y, x - y$.

AOPSOnline AOPSAcademy AOPS