Art of Problem Solving

AoPS Community

2009 Singapore Team Selection Test

Singapore Team Selection Test 2009

www.artofproblemsolving.com/community/c708172
by parmenides51, Agung, Tales, dominicleejun, April

- Day 1

1 Two circles are tangent to each other internally at a point T. Let the chord $A B$ of the larger circle be tangent to the smaller circle at a point P. Prove that the line $T P$ bisects $\angle A T B$.

2 If a, b, c are three positive real numbers such that $a b+b c+c a=1$, prove that

$$
\sqrt[3]{\frac{1}{a}+6 b}+\sqrt[3]{\frac{1}{b}+6 c}+\sqrt[3]{\frac{1}{c}+6 a} \leq \frac{1}{a b c}
$$

3 Determine the smallest positive integer N such that there exists 6 distinct integers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}>$ 0 satisfying:
(i) $N=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
(ii) $N-a_{i}$ is a perfect square for $i=1,2,3,4,5,6$.

- Day 2

1 Let $S=\{a+n p: n=0,1,2,3, \ldots\}$ where a is a positive integer and p is a prime. Suppose there exist positive integers x and y st x^{41} and y^{49} are in S. Determine if there exists a positive integer z st z^{2009} is in S.

2 Let H be the orthocentre of $\triangle A B C$ and let P be a point on the circumcircle of $\triangle A B C$, distinct from A, B, C. Let E and F be the feet of altitudes from H onto $A C$ and $A B$ respectively. Let $P A Q B$ and $P A R C$ be parallelograms. Suppose $Q A$ meets $R H$ at X and $R A$ meets $Q H$ at Y. Prove that $X E$ is parallel to $Y F$.

3 In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary. Find the largest n for which there exist n boxes B_{1}, \ldots, B_{n} such that B_{i} and B_{j} intersect if and only if $i \not \equiv j \pm 1(\bmod n)$.

Proposed by Gerhard Woeginger, Netherlands

