AoPS Community

Vietnam Team Selection Test 2018

www.artofproblemsolving.com/community/c708642
by parmenides51, gausskarl

- Day 1

1 Let $A B C$ be a acute, non-isosceles triangle. D, E, F are the midpoints of sides $A B, B C, A C$, resp. Denote by $(O),\left(O^{\prime}\right)$ the circumcircle and Euler circle of $A B C$. An arbitrary point P lies inside triangle $D E F$ and $D P, E P, F P$ intersect $\left(O^{\prime}\right)$ at $D^{\prime}, E^{\prime}, F^{\prime}$, resp. Point A^{\prime} is the point such that D^{\prime} is the midpoint of $A A^{\prime}$. Points B^{\prime}, C^{\prime} are defined similarly.
a. Prove that if $P O=P O^{\prime}$ then $O \in\left(A^{\prime} B^{\prime} C^{\prime}\right)$;
b. Point A^{\prime} is mirrored by $O D$, its image is $X . Y, Z$ are created in the same manner. H is the orthocenter of $A B C$ and $X H, Y H, Z H$ intersect $B C, A C, A B$ at M, N, L resp. Prove that M, N, L are collinear.

2 For every positive integer m, a $m \times 2018$ rectangle consists of unit squares (called "cell") is called complete if the following conditions are met:
i. In each cell is written either a " 0 ", a " 1 " or nothing;
ii. For any binary string S with length 2018, one may choose a row and complete the empty cells so that the numbers in that row, if read from left to right, produce S (In particular, if a row is already full and it produces S in the same manner then this condition ii. is satisfied).
A complete rectangle is called minimal, if we remove any of its rows and then making it no longer complete.
a. Prove that for any positive integer $k \leq 2018$ there exists a minimal $2^{k} \times 2018$ rectangle with exactly k columns containing both 0 and 1 .
b. A minimal $m \times 2018$ rectangle has exactly k columns containing at least some 0 or 1 and the rest of columns are empty. Prove that $m \leq 2^{k}$.

3 For every positive integer $n \geq 3$, let ϕ_{n} be the set of all positive integers less than and coprime to n. Consider the polynomial:

$$
P_{n}(x)=\sum_{k \in \phi_{n}} x^{k-1} .
$$

a. Prove that $P_{n}(x)=\left(x^{r_{n}}+1\right) Q_{n}(x)$ for some positive integer r_{n} and polynomial $Q_{n}(x) \in \mathbb{Z}[x]$ (not necessary non-constant polynomial).
b. Find all n such that $P_{n}(x)$ is irreducible over $\mathbb{Z}[x]$.

4 Let $a \in\left[\frac{1}{2}, \frac{3}{2}\right]$ be a real number. Sequences $\left(u_{n}\right),\left(v_{n}\right)$ are defined as follows:

$$
u_{n}=\frac{3}{2^{n+1}} \cdot(-1)^{\left\lfloor 2^{n+1} a\right\rfloor}, v_{n}=\frac{3}{2^{n+1}} \cdot(-1)^{n+\left\lfloor 2^{n+1} a\right\rfloor} .
$$

a. Prove that

$$
\left(u_{0}+u_{1}+\cdots+u_{2018}\right)^{2}+\left(v_{0}+v_{1}+\cdots+v_{2018}\right)^{2} \leq 72 a^{2}-48 a+10+\frac{2}{4^{2019}}
$$

b. Find all values of a in the equality case.

5 In a $m \times n$ square grid, with top-left corner is A, there is route along the edges of the grid starting from A and visits all lattice points (called "nodes") exactly once and ending also at A.
a. Prove that this route exists if and only if at least one of m, n is odd.
b. If such a route exists, then what is the least possible of turning points?
*A turning point is a node that is different from A and if two edges on the route intersect at the node are perpendicular.

6 Triangle $A B C$ circumscribed (O) has A-excircle (J) that touches $A B, B C, A C$ at F, D, E, resp.
a. L is the midpoint of $B C$. Circle with diameter $L J$ cuts $D E, D F$ at K, H. Prove that $(B D K),(C D H)$ has an intersecting point on (J).
b. Let $E F \cap B C=\{G\}$ and $G J$ cuts $A B, A C$ at M, N, resp. $P \in J B$ and $Q \in J C$ such that

$$
\angle P A B=\angle Q A C=90^{\circ} .
$$

$P M \cap Q N=\{T\}$ and S is the midpoint of the larger $B C$-arc of $(O) .(I)$ is the incircle of $A B C$. Prove that $S I \cap A T \in(O)$.

