AoPS Community

Vietnam Team Selection Test 2016

www.artofproblemsolving.com/community/c708647
by parmenides51, quangminhltv99, rterte

- Day 1

1 Find all $a, n \in \mathbb{Z}^{+}(a>2)$ such that each prime divisor of $a^{n}-1$ is also prime divisor of $a^{3^{2016}}-1$

2 Let A be a set contains 2000 distinct integers and B be a set contains 2016 distinct integers. K is the numbers of pairs (m, n) satisfying

$$
\left\{\begin{array}{l}
m \in A, n \in B \\
|m-n| \leq 1000
\end{array}\right.
$$

Find the maximum value of K
3 Let $A B C$ be triangle with circumcircle (O) of fixed $B C, A B \neq A C$ and $B C$ not a diameter. Let I be the incenter of the triangle $A B C$ and $D=A I \cap B C, E=B I \cap C A, F=C I \cap A B$. The circle passing through D and tangent to $O A$ cuts for second time (O) at $G(G \neq A)$. GE, GF cut (O) also at M, N respectively.
a) Let $H=B M \cap C N$. Prove that $A H$ goes through a fixed point.
b) Suppose $B E, C F$ cut (O) also at L, K respectively and $A H \cap K L=P$. On $E F$ take Q for $Q P=Q I$. Let J be a point of the circimcircle of triangle $I B C$ so that $I J \perp I Q$. Prove that the midpoint of $I J$ belongs to a fixed circle.

- Day 2

4 Given an acute triangle $A B C$ satisfying $\angle A C B<\angle A B C<\angle A C B+\frac{\angle B A C}{2}$. Let D be a point on $B C$ such that $\angle A D C=\angle A C B+\frac{\angle B A C}{2}$. Tangent of circumcircle of $A B C$ at A hits $B C$ at E. Bisector of $\angle A E B$ intersects $A D$ and $(A D E)$ at G and F respectively, $D F$ hits $A E$ at H.
a) Prove that circle with diameter $A E, D F, G H$ go through one common point.
b) On the exterior bisector of $\angle B A C$ and ray $A C$ given point K and M respectively satisfying $K B=K D=K M$, On the exterior bisector of $\angle B A C$ and ray $A B$ given point L and N respectively satisfying $L C=L D=L N$. Circle throughs M, N and midpoint I of $B C$ hits $B C$ at P $(P \neq I)$. Prove that $B M, C N, A P$ concurrent.

5 Given n numbers $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ where $a_{i} \in\{0,1\}$ for all $i=1,2 .,,, . n$. Consider n following
n-tuples

$$
\begin{aligned}
S_{1} & =\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right) \\
S_{2} & =\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right) \\
\quad & \vdots \\
S_{n} & =\left(a_{n}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right) .
\end{aligned}
$$

For each tuple $r=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, let

$$
\omega(r)=b_{1} \cdot 2^{n-1}+b_{2} \cdot 2^{n-2}+\cdots+b_{n} .
$$

Assume that the numbers $\omega\left(S_{1}\right), \omega\left(S_{2}\right), \ldots, \omega\left(S_{n}\right)$ receive exactly k different values.
a) Prove that $k \mid n$ and $\left.\frac{2^{n}-1}{2^{k}-1} \right\rvert\, \omega\left(S_{i}\right) \quad \forall i=1,2, \ldots, n$.
b) Let

$$
\begin{aligned}
M & =\max _{i=\overline{1, n}} \omega\left(S_{i}\right) \\
m & =\min _{i=\overline{1, n}} \omega\left(S_{i}\right) .
\end{aligned}
$$

Prove that

$$
M-m \geq \frac{\left(2^{n}-1\right)\left(2^{k-1}-1\right)}{2^{k}-1}
$$

6 Given 16 distinct real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{16}$. For each polynomial P, denote

$$
V(P)=P\left(\alpha_{1}\right)+P\left(\alpha_{2}\right)+\ldots+P\left(\alpha_{16}\right) .
$$

Prove that there is a monic polynomial $Q, \operatorname{deg} Q=8$ satisfying:
i) $V(Q P)=0$ for all polynomial P has $\operatorname{deg} P<8$.
ii) Q has 8 real roots (including multiplicity).

