AoPS Community

Vietnam Team Selection Test 2013

www.artofproblemsolving.com/community/c708664
by parmenides51, gausskarl, rterte, quangminhltv99

- Day 1

1 The $A B C D$ is a cyclic quadrilateral with no parallel sides inscribed in circle (O, R). Let E be the intersection of two diagonals and the angle bisector of $A E B$ cut the lines $A B, B C, C D, D A$ at M, N, P, Q respectively .
a) Prove that the circles $(A Q M),(B M N),(C N P),(D P Q)$ are passing through a point. Call that point K.
b) Denote $\min \{A C, B D\}=m$. Prove that $O K \leq \frac{2 R^{2}}{\sqrt{4 R^{2}-m^{2}}}$.

2 a. Prove that there are infinitely many positive integers t such that both $2012 t+1$ and $2013 t+1$ are perfect squares.
b. Suppose that m, n are positive integers such that both $m n+1$ and $m n+n+1$ are perfect squares. Prove that $8(2 m+1)$ divides n.

3 Given a number $n \in \mathbb{Z}^{+}$and let S denotes the set $\{0,1,2, \ldots, 2 n+1\}$. Consider the function $f: \mathbb{Z} \times S \rightarrow[0,1]$ satisfying two following conditions simultaneously.
i) $f(x, 0)=f(x, 2 n+1)=0 \forall x \in \mathbb{Z}$;
ii) $f(x-1, y)+f(x+1, y)+f(x, y-1)+f(x, y+1)=1$ for all $x \in \mathbb{Z}$ and $y \in\{1,2,3, \ldots, 2 n\}$.

Let F be the set of such functions. For each $f \in F$, let $v(f)$ be the set of values of f.
a) Proof that $|F|=\infty$.
b) Proof that for each $f \in F$ then $|v(f)|<\infty$.
c) Find the maximum value of $|v(f)|$ for $f \in F$.

- Day 2

4 Find the greatest positive integer k such that the following inequality holds for all $a, b, c \in \mathbb{R}^{+}$ satisfying $a b c=1$

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{k}{a+b+c+1} \geqslant 3+\frac{k}{4}
$$

5 Let $A B C$ be a triangle with $\angle B A C=45^{\circ}$. Altitudes $A D, B E, C F$ meet at H. $E F$ cuts $B C$ at $P . I$ is the midpoint of $B C, I F$ cuts $P H$ in Q.
a) Prove that $\angle I Q H=\angle A I E$.
b) Let (K) be the circumcircle of triangle $A B C$, (J) be the circumcircle of triangle $K P D$. $C K$ cuts circle (J) at $G, I G$ cuts (J) at $M, J C$ cuts circle of diameter $B C$ at N. Prove that G, N, M, C lie on the same circle.

6 A cube with size $10 \times 10 \times 10$ consists of 1000 unit cubes, all colored white. A and B play a game on this cube. A chooses some pillars with size $1 \times 10 \times 10$ such that no two pillars share a vertex or side, and turns all chosen unit cubes to black. B is allowed to choose some unit cubes and ask A their colors. How many unit cubes, at least, that B need to choose so that for any answer from A, B can always determine the black unit cubes?

