AoPS Community

Canada National Olympiad 2015

www.artofproblemsolving.com/community/c71018
by aditya21
$1 \quad$ Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of positive integers. Find all functions f, defined on \mathbb{N} and taking values in \mathbb{N}, such that $(n-1)^{2}<f(n) f(f(n))<n^{2}+n$ for every positive integer n.

2 Let $A B C$ be an acute-angled triangle with altitudes $A D, B E$, and $C F$. Let H be the orthocentre, that is, the point where the altitudes meet. Prove that

$$
\frac{A B \cdot A C+B C \cdot C A+C A \cdot C B}{A H \cdot A D+B H \cdot B E+C H \cdot C F} \leq 2 .
$$

3 On a $(4 n+2) \times(4 n+2)$ square grid, a turtle can move between squares sharing a side. The turtle begins in a corner square of the grid and enters each square exactly once, ending in the square where she started. In terms of n, what is the largest positive integer k such that there must be a row or column that the turtle has entered at least k distinct times?

4 Let $A B C$ be an acute-angled triangle with circumcenter O. Let I be a circle with center on the altitude from A in $A B C$, passing through vertex A and points P and Q on sides $A B$ and $A C$. Assume that

$$
B P \cdot C Q=A P \cdot A Q .
$$

Prove that I is tangent to the circumcircle of triangle $B O C$.
5 Let p be a prime number for which $\frac{p-1}{2}$ is also prime, and let a, b, c be integers not divisible by p. Prove that there are at most $1+\sqrt{2 p}$ positive integers n such that $n<p$ and p divides $a^{n}+b^{n}+c^{n}$.

