Art of Problem Solving

AoPS Community

2016 Lusophon Mathematical Olympiad

Lusophon Mathematical Olympiad 2016

www.artofproblemsolving.com/community/c711448
by parmenides51, mathisreal, Mathematics73

- Day 1

1 Consider 10 distinct positive integers that are all prime to each other (that is, there is no a prime factor common to all), but such that any two of them are not prime to each other. What is the smallest number of distinct prime factors that may appear in the product of 10 numbers?

2 The circle ω_{1} intersects the circle ω_{2} in the points A and B, a tangent line to this circles intersects ω_{1} and ω_{2} in the points E and F respectively. Suppose that A is inside of the triangle $B E F$, let H be the orthocenter of $B E F$ and M is the midpoint of $B H$. Prove that the centers of the circles ω_{1} and ω_{2} and the point M are collinears.

3 Suppose a real number a is a root of a polynomial with integer coefficients $P(x)=a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$.
Let $G=\left|a_{n}\right|+\left|a_{n-1}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|$. We say that G is a gingado of a.
For example, as 2 is root of $P(x)=x^{2}+x-2, G=|1|+|1|+|-2|=4$, we say that 4 is a gingado of 2 .
What is the fourth largest real number a such that 3 is a gingado of a ?

- Day 2

48 CPLP football teams competed in a championship in which each team played one and only time with each of the other teams. In football, each win is worth 3 points, each draw is worth 1 point and the defeated team does not score. In that championship four teams were in first place with 15 points and the others four came in second with N points each. Knowing that there were 12 draws throughout the championship, determine N.

5 A numerical sequence is called lusophone if it satisfies the following three conditions:
i) The first term of the sequence is number 1.
ii) To obtain the next term of the sequence we can multiply the previous term by a positive prime number ($2,3,5,7,11, \ldots$) or add 1 .
(iii) The last term of the sequence is the number 2016.

For example: $1 \xrightarrow{\times 11} 11 \xrightarrow{\times 61} 671 \xrightarrow{+1} 672 \xrightarrow{\times 3} 2016$
How many Lusophone sequences exist in which (as in the example above) the add 1 operation was used exactly once and not multiplied twice by the same prime number?

Prove that any positive power of 2 can be written as:

$$
5 x y-x^{2}-2 y^{2}
$$

where x and y are odd numbers.

