Art of Problem Solving

AoPS Community

Argentina Cono Sur Team Selection Test 2013

www.artofproblemsolving.com/community/c71148
by Leicich, carlosbr

- Day 1

12000 people are standing on a line. Each one of them is either a liar, who will always lie, or a truth-teller, who will always tell the truth. Each one of them says: "there are more liars to my left than truth-tellers to my right". Determine, if possible, how many people from each class are on the line.

2 If $x \neq 1, y \neq 1, x \neq y$ and

$$
\frac{y z-x^{2}}{1-x}=\frac{x z-y^{2}}{1-y}
$$

show that both fractions are equal to $x+y+z$.
31390 ants are placed near a line, such that the distance between their heads and the line is less than 1 cm and the distance between the heads of two ants is always larger than 2 cm . Show that there is at least one pair of ants such that the distance between their heads is at least 10 meters (consider the head of an ant as point).

- Day 2

4 Show that the number $N=\underbrace{44 \ldots}_{n} \underbrace{88 \ldots 8}_{n}-1 \underbrace{33 \ldots 3}_{n-1} 2$ is a perfect square for all positive integers n.
$5 \quad$ Let $A B C$ be an equilateral triangle and D a point on side $A C$. Let E be a point on $B C$ such that $D E \perp B C, F$ on $A B$ such that $E F \perp A B$, and G on $A C$ such that $F G \perp A C$. Lines $F G$ and $D E$ intersect in P. If M is the midpoint of $B C$, show that $B P$ bisects $A M$.

6 Let $m \geq 4$ and $n \geq 4$. An integer is written on each cell of a $m \times n$ board. If each cell has a number equal to the arithmetic mean of some pair of numbers written on its neighbouring cells, determine the maximum amount of distinct numbers that the board may have.

Note: two neighbouring cells share a common side.

