

AoPS Community

2017 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 3 2017

www.artofproblemsolving.com/community/c712938 by parmenides51

-	Day 1
1	Let <i>a</i> be a fixed positive integer. Find the largest integer <i>b</i> such that $(x + a)(x + b) = x + a + b$, for some integer <i>x</i> .
2	One have n distinct circles(with the same radius) such that for any $k + 1$ circles there are (at least) two circles that intersects in two points. Show that for each line l one can make k lines, each one parallel with l , such that each circle has (at least) one point of intersection with some of these lines.
3	Show that there are infinitely many pairs of positive integers (m, n) , with $m < n$, such that
	$m \text{ divides } n^{2016} + n^{2015} + \dots + n^2 + n + 1 \text{ and } n \text{ divides } m^{2016} + m^{2015} + \dots + m^2 + m + 1.$
-	Day 2
4	Is there a number n such that one can write n as the sum of 2017 perfect squares and (with at least) 2017 distinct ways?
5	Let ABC be a triangle and I is your incenter, let P be a point in AC such that PI is perpendicular to AC , and let D be the reflection of B wrt circumcenter of $\triangle ABC$. The line DI intersects again the circumcircle of $\triangle ABC$ in the point Q . Prove that QP is the angle bisector of the angle $\angle AQC$.
6	For each fixed positiver integer $n, n \ge 4$ and P an integer, let $(P)_n \in [1, n]$ be the smallest positive residue of P modulo n . Two sequences a_1, a_2, \ldots, a_k and b_1, b_2, \ldots, b_k with the terms in $[1, n]$ are defined as equivalent, if there is t positive integer, $gcd(t, n) = 1$, such that the sequence $(ta_1)_n, \ldots, (ta_k)_n$ is a permutation of b_1, b_2, \ldots, b_k . Let α a sequence of size n and your terms are in $[1, n]$, such that each term appears h times in the sequence α and $2h \ge n$. Show that α is equivalent to some sequence β which contains a subsequence such that your size is(at most) equal to h and your sum is exactly equal to n .

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱