AoPS Community

2017 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32017

www.artofproblemsolving.com/community/c712938
by parmenides51

- Day 1

1 Let a be a fixed positive integer. Find the largest integer b such that $(x+a)(x+b)=x+a+b$, for some integer x.

2 One have n distinct circles(with the same radius) such that for any $k+1$ circles there are (at least) two circles that intersects in two points. Show that for each line l one can make k lines, each one parallel with l, such that each circle has (at least) one point of intersection with some of these lines.

3 Show that there are infinitely many pairs of positive integers (m, n), with $m<n$, such that m divides $n^{2016}+n^{2015}+\cdots+n^{2}+n+1$ and n divides $m^{2016}+m^{2015}+\cdots+m^{2}+m+1$.

- Day 2

4 Is there a number n such that one can write n as the sum of 2017 perfect squares and (with at least) 2017 distinct ways?
$5 \quad$ Let $A B C$ be a triangle and I is your incenter, let P be a point in $A C$ such that $P I$ is perpendicular to $A C$, and let D be the reflection of B wrt circumcenter of $\triangle A B C$. The line $D I$ intersects again the circumcircle of $\triangle A B C$ in the point Q. Prove that $Q P$ is the angle bisector of the angle $\angle A Q C$.

6 For each fixed positiver integer $n, n \geq 4$ and P an integer, let $(P)_{n} \in[1, n]$ be the smallest positive residue of P modulo n. Two sequences $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{k}$ with the terms in $[1, n]$ are defined as equivalent, if there is t positive integer, $\operatorname{gcd}(t, n)=1$, such that the sequence $\left(t a_{1}\right)_{n}, \ldots,\left(t a_{k}\right)_{n}$ is a permutation of $b_{1}, b_{2}, \ldots, b_{k}$.
Let α a sequence of size n and your terms are in $[1, n]$, such that each term appears h times in the sequence α and $2 h \geq n$.
Show that α is equivalent to some sequence β which contains a subsequence such that your size is(at most) equal to h and your sum is exactly equal to n.

