AoPS Community

2011 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32011

www.artofproblemsolving.com/community/c712947
by parmenides51, Leicich, mathisreal

- Day 1

1 Given a positive integer n, an operation consists of replacing n with either $2 n-1,3 n-2$ or $5 n-4$. A number b is said to be a follower of number a if b can be obtained from a using this operation multiple times. Find all positive integers $a<2011$ that have a common follower with 2011.

2 Let $A B C$ an acute triangle and H its orthocenter. Let E and F be the intersection of lines $B H$ and $C H$ with $A C$ and $A B$ respectively, and let D be the intersection of lines $E F$ and $B C$. Let Γ_{1} be the circumcircle of $A E F$, and Γ_{2} the circumcircle of $B H C$. The line $A D$ intersects Γ_{1} at point $I \neq A$. Let J be the feet of the internal bisector of $\angle B H C$ and M the midpoint of the arc $\widehat{B C}$ from Γ_{2} that contains the point H. The line $M J$ intersects Γ_{2} at point $N \neq M$. Show that the triangles $E I F$ and $C N B$ are similar.

3 Let M be a map made of several cities linked to each other by flights. We say that there is a route between two cities if there is a nonstop flight linking these two cities. For each city to the M denote by M_{a} the map formed by the cities that have a route to and routes linking these cities together (to not part of M_{a}). The cities of M_{a} are divided into two sets so that the number of routes linking cities of different sets is maximum; we call this number the cut of M_{a}. Suppose that for every cut of M_{a}, it is strictly less than two thirds of the number of routes M_{a}. Show that for any coloring of the M routes with two colors there are three cities of M joined by three routes of the same color.

- Day 2

4 We consider Γ_{1} and Γ_{2} two circles that intersect at points P and Q. Let A, B and C be points on the circle Γ_{1} and D, E and F points on the circle Γ_{2} so that the lines $A E$ and $B D$ intersect at P and the lines $A F$ and $C D$ intersect at Q. Denote M and N the intersections of lines $A B$ and $D E$ and of lines $A C$ and $D F$, respectively. Show that $A M D N$ is a parallelogram.

5 A form is the union of squared rectangles whose bases are consecutive unitary segments in a horizontal line that leaves all the rectangles on the same side, and whose heights m_{1}, \ldots, m_{n} satisying $m_{1} \geq \ldots \geq m_{n}$. An angle in a form consists of a box v and of all the boxes to the right of v and all the boxes above v. The size of a form of an angle is the number of boxes it contains. Find the maximum number of angles of size 11 in a form of size 400.
source (http://www.oma.org.ar/enunciados/omr20.htm)

6 Let $d(n)$ be the sum of positive integers divisors of number n and $\phi(n)$ the quantity of integers in the interval $[0, n]$ such that these integers are coprime with n. For instance $d(6)=12$ and $\phi(7)=6$.
Determine if the set of the integers n such that, $d(n) \cdot \phi(n)$ is a perfect square, is finite or infinite set.

