Art of Problem Solving

AoPS Community

2012 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32012

www.artofproblemsolving.com/community/c712956
by parmenides51, Leicich, MexicOMM

- Day 1

1 An integer n is called apocalyptic if the addition of 6 different positive divisors of n gives 3528 . For example, 2012 is apocalyptic, because it has six divisors, 1, 2, 4, 503, 1006 and 2012, that add up to 3528 .

Find the smallest positive apocalyptic number.
2 A rectangle is divided into n^{2} smaller rectangle by $n-1$ horizontal lines and $n-1$ vertical lines. Between those rectangles there are exactly 5660 which are not congruent. For what minimum value of n is this possible?

3 Let T be a non-isosceles triangle and $n \geq 4$ an integer. Prove that you can divide T in n triangles and draw in each of them an inner bisector so that those n bisectors are parallel.

- Day 2

4 Find all real numbers x, such that:
a) $\lfloor x\rfloor+\lfloor 2 x\rfloor+\ldots+\lfloor 2012 x\rfloor=2013$
b) $\lfloor x\rfloor+\lfloor 2 x\rfloor+\ldots+\lfloor 2013 x\rfloor=2014$
$5 \quad$ Let $a \geq 2$ and $n \geq 3$ be integers. Prove that one of the numbers $a^{n}+1, a^{n+1}+1, \ldots, a^{2 n-2}+1$ does not share any odd divisor greater than 1 with any of the other numbers.

6 In each square of a 100×100 board there is written an integer. The allowed operation is to choose four squares that form the figure or any of its reflections or rotations, and add 1 to each of the four numbers. The aim is, through operations allowed, achieving a board with the smallest possible number of different residues modulo 33 . What is the minimum number that can be achieved with certainty?

