AoPS Community

2015 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32015

www.artofproblemsolving.com/community/c712958
by parmenides51, Math_CYCR

- \quad Day 1

1 Let $A B C$ be a triangle and P a point on the side $B C$. Let S_{1} be the circumference with center B and radius $B P$ that cuts the side $A B$ at D such that D lies between A and B. Let S_{2} be the circumference with center C and radius $C P$ that cuts the side $A C$ at E such that E lies between A and C. Line $A P$ cuts S_{1} and S_{2} at X and Y different from P, respectively. We call T the point of intersection of $D X$ and $E Y$. Prove that $\angle B A C+2 \angle D T E=180$

2 Let a, b, c positive integers, coprime. For each whole number $n \geq 1$, we denote by $s(n)$ the number of elements in the set $\{a, b, c\}$ that divide n. We consider $k_{1}<k_{2}<k_{3}<\ldots$.the sequence of all positive integers that are divisible by some element of $\{a, b, c\}$. Finally we define the characteristic sequence of (a, b, c) like the succession $s\left(k_{1}\right), s\left(k_{2}\right), s\left(k_{3}\right), \ldots$.
Prove that if the characteristic sequences of (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$) are equal, then $a=a^{\prime}, b=b^{\prime}$ and $c=c^{\prime}$

3 We say an integer number $n \geq 1$ is conservative, if the smallest prime divisor of $(n!)^{n}+1$ is at most $n+2015$. Decide if the number of conservative numbers is infinite or not.

- Day 2

4 You have a 9×9 board with white squares. A tile can be moved from one square to another neighbor (tiles that share one side). If we paint some squares of black, we say that such coloration is good if there is a white square where we can place a chip that moving through white squares can return to the initial square having passed through at least 3 boxes, without passing the same square twice.
Find the highest possible value of k such that any form of painting k squares of black are a good coloring.
$5 \quad$ For a positive integer number n we denote $d(n)$ as the greatest common divisor of the binomial coefficients $\binom{n+1}{n},\binom{n+2}{n}, \ldots,\binom{2 n}{n}$. Find all possible values of $d(n)$

6 Let $A B C$ be an acut-angles triangle of incenter I, circumcenter O and inradius r. Let ω be the inscribed circle of the triangle $A B C . A_{1}$ is the point of ω such that $A I A_{1} O$ is a convex trapezoid of bases $A O$ and $I A_{1}$. Let ω_{1} be the circle of radius r which goes through A_{1}, tangent to the line $A B$ and is different from ω. Let ω_{2} be the circle of radius r which goes through A_{1}, is tangent to the line $A C$ and is different from ω. Circumferences ω_{1} and ω_{2} they are cut at points A_{1} and
A_{2}. Similarly are defined points B_{2} and C_{2}. Prove that the lines $A A_{2}, B B_{2}$ and $C C 2$ they are concurrent.

