

AoPS Community

2015 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 3 2015

www.artofproblemsolving.com/community/c712958 by parmenides51, Math_CYCR

- Day 1
- 1 Let ABC be a triangle and P a point on the side BC. Let S_1 be the circumference with center B and radius BP that cuts the side AB at D such that D lies between A and B. Let S_2 be the circumference with center C and radius CP that cuts the side AC at E such that E lies between A and C. Line AP cuts S_1 and S_2 at X and Y different from P, respectively. We call T the point of intersection of DX and EY. Prove that $\angle BAC + 2\angle DTE = 180$
- 2 Let a, b, c positive integers, coprime. For each whole number $n \ge 1$, we denote by s(n) the number of elements in the set $\{a, b, c\}$ that divide n. We consider $k_1 < k_2 < k_3 < \dots$ the sequence of all positive integers that are divisible by some element of $\{a, b, c\}$. Finally we define the characteristic sequence of (a, b, c) like the succession $s(k_1), s(k_2), s(k_3), \dots$. Prove that if the characteristic sequences of (a, b, c) and (a', b', c') are equal, then a = a', b = b' and c = c'
- **3** We say an integer number $n \ge 1$ is conservative, if the smallest prime divisor of $(n!)^n + 1$ is at most n + 2015. Decide if the number of conservative numbers is infinite or not.
- Day 2
- 4 You have a 9×9 board with white squares. A tile can be moved from one square to another neighbor (tiles that share one side). If we paint some squares of black, we say that such coloration is *good* if there is a white square where we can place a chip that moving through white squares can return to the initial square having passed through at least 3 boxes, without passing the same square twice.

Find the highest possible value of k such that any form of painting k squares of black are a *good* coloring.

- **5** For a positive integer number n we denote d(n) as the greatest common divisor of the binomial coefficients $\binom{n+1}{n}, \binom{n+2}{n}, ..., \binom{2n}{n}$. Find all possible values of d(n)
- **6** Let *ABC* be an acut-angles triangle of incenter *I*, circumcenter *O* and inradius *r*. Let ω be the inscribed circle of the triangle *ABC*. *A*₁ is the point of ω such that *AIA*₁*O* is a convex trapezoid of bases *AO* and *IA*₁. Let ω_1 be the circle of radius *r* which goes through *A*₁, tangent to the line *AB* and is different from ω . Let ω_2 be the circle of radius *r* which goes through *A*₁, is tangent to the line *AC* and is different from ω . Circumferences ω_1 and ω_2 they are cut at points *A*₁ and

 A_2 . Similarly are defined points B_2 and C_2 . Prove that the lines AA_2, BB_2 and CC2 they are concurrent.

Act of Problem Solving is an ACS WASC Accredited School.