AoPS Community

2007 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32007

www.artofproblemsolving.com/community/c712984
by parmenides51

- Day 1

1 Determine the values of $n \in N$ such that a square of side n can be split into a square of side 1 and five rectangles whose side measures are 10 distinct natural numbers and all greater than 1.

2 Let $A B C$ be a triangle with incenter I. The circle of center I which passes through B intersects $A C$ at points E and F, with E and F between A and C and different from each other. The circle circumscribed to triangle $I E F$ intersects segments $E B$ and $F B$ at Q and R, respectively. Line $Q R$ intersects the sides $A B$ and $B C$ at P and S, respectively.
If a, b and c are the measures of the sides $B C, C A$ and $A B$, respectively, calculate the measurements of $B P$ and $B S$.

3 Let $p>3$ be a prime number and x an integer, denote by $r(x) \in\{0,1, \ldots, p-1\}$ to the rest of x modulo p. Let $x_{1}, x_{2}, \ldots, x_{k}(2<k<p)$ different integers modulo p and not divisible by p. We say that a number $a \in\{1,2, \ldots, p-1\}$ is good if $r\left(a x_{1}\right)<r\left(a x_{2}\right)<\ldots<r\left(a x_{k}\right)$. Show that there are at most $\frac{2 p}{k+1}-1$ good numbers.

- Day 2

4 Find all functions $f: Z \rightarrow Z$ with the following property. if $x+y+z=0$, then $f(x)+f(y)+f(z)=$ xyz.

5 Divide each side of a triangle into 50 equal parts, and each point of the division is joined to the opposite vertex by a segment. Calculate the number of intersection points determined by these segments.

Clarification : the vertices of the original triangle are not considered points of intersection or division.
$6 \quad$ Let $n>2$ be a natural number. A subset A of R is said n-small if there exist n real numbers $t_{1}, t_{2}, \ldots, t_{n}$ such that the sets $t_{1}+A, t_{2}+A, \ldots, t_{n}+A$ are different. Show that R can not be represented as a union of $n-1 n$-small sets.

Notation : if $r \in R$ and $B \subset R$, then $r+B=\{r+b \mid b \in B\}$.

