AoPS Community

National Math Olympiad (3rd Round) 2018

www.artofproblemsolving.com/community/c714546
by Dadgarnia, Taha1381, Yaghi, H.HAFEZI2000

- Combinatorics

1 Alice and Bob are play a game in a $(2 n) *(2 n)$ chess boared. Alice starts from the top right point moving 1 unit in every turn.Bob starts from the down left square and does the same. The goal of Alice is to make a closed shape ending in its start position and cannot reach any point that was reached before by any of players if a players cannot move the other player keeps moving.what is the maximum are of the shape that the first player can build with every strategy of second player.

2 There are 8 points in the plane.we write down the area of each triangle having all vertices amoung these points(totally 56 numbers). Let them be $a_{1}, a_{2}, \ldots a_{56}$. Prove that there is a choice of plus or minus such that:

$$
\pm a_{1} \pm a_{2} \cdots \pm a_{56}=0
$$

3 Find the smallest positive integer n such that we can write numbers $1,2, \ldots, n$ in a 18*18 board such that:
i)each number appears at least once
ii)In each row or column,there are no two numbers having difference 0 or 1

4 Let n be a positive integer.Consider all 2^{n} binary strings of length n. We say two of these strings are neighbors if they differ in exactly 1 digit. We have colored m strings.In each moment,we can color any uncolored string which is neighbor with at least 2 colored strings.After some time,all the strings are colored. Find the minimum possible value of m.

- Geometry

1 Incircle of triangle $A B C$ is tangent to sides $B C, C A, A B$ at D, E, F, respectively.Points P, Q are inside angle $B A C$ such that $F P=F B, F P \| A C$ and $E Q=E C, E Q \| A B$. Prove that P, Q, D are collinear.

2 Two intersecting circles ω_{1} and ω_{2} are given.Lines $A B, C D$ are common tangents of $\omega_{1}, \omega_{2}(A, C \in$ $\omega_{1}, B, D \in \omega_{2}$)
Let M be the midpoint of $A B$. Tangents through M to ω_{1} and ω_{2} (other than $A B$) intersect $C D$ at X, Y. Let I be the incenter of $M X Y$. Prove that $I C=I D$.
$3 H$ is the orthocenter of acude triangle $A B C$. Let ω be the circumcircle of $B H C$ with center $O^{\prime} . \Omega$ is the nine-point circle of $A B C . X$ is an arbitrary point on $\operatorname{arc} B H C$ of ω and $A X$ intersects Ω at $Y . P$ is a point on Ω such that $P X=P Y$. Prove that $O^{\prime} P X=90$.

4 for acute triangle $\triangle A B C$ with orthocenter H, and E, F the feet of altitudes for B, C, we have P on $E F$ such as that $H O \perp H P$. Q is on segment $A H$ so $H M \perp P Q$. prove $Q A=3 Q H$

- Number theory
$1 \quad n \geq 2$ is an integer. Prove that the number of natural numbers m so that $0 \leq m \leq n^{2}-1, x^{n}+y^{n} \equiv$ $m\left(\bmod n^{2}\right)$ has no solutions is at least $\binom{n}{2}$

2 Prove that for every prime number p there exist infinity many natural numbers n so that they satisfy:
$2^{2^{2^{\ldots} .^{n}}} \equiv n^{2^{2^{\cdots}}}($ modp $)$
Where in both sides 2 appeared 1397 times
3 Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ so that for every natural numbers $m, n: f(n)+2 m n+f(m)$ is a perfect square.

4 Prove that for any natural numbers a, b there exist infinity many prime numbers p so that $\operatorname{Ord} d_{p}(a)=$ $\operatorname{Ord}_{p}(b)$ (Proving that there exist infinity prime numbers p so that $\operatorname{Ord}_{p}(a) \geq \operatorname{Ord}_{p}(b)$ will get a partial mark)

- Algebra

1 For positive real numbers a, b, c such that $a b+a c+b c=1$ prove that:

$$
\prod_{c y c}\left(\sqrt{b c}+\frac{1}{2 a+\sqrt{b c}}\right) \geq 8 a b c
$$

2 Find all functions $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ such that:
$f\left(x^{3}+x f(x y)\right)=f(x y)+x^{2} f(x+y) \forall x, y \in \mathbb{R}^{\geq 0}$
3 A)Let x, y be two complex numbers on the unit circle so that:
$\frac{\pi}{3} \leq \arg (x)-\arg (y) \leq \frac{5 \pi}{3}$
Prove that for any $z \in \mathbb{C}$ we have:
$|z|+|z-x|+|z-y| \geq|z x-y|$
B)Let x, y be two complex numbers so that:
$\frac{\pi}{3} \leq \arg (x)-\arg (y) \leq \frac{2 \pi}{3}$
Prove that for any $z \in \mathbb{C}$ we have:

$$
|z|+|z-y|+|z-x| \geq\left|\frac{\sqrt{3}}{2} x+\left(y-\frac{x}{2}\right) i\right|
$$

4 Let $P(x)$ be a non-zero polynomial with real coefficient so that $P(0)=0$.Prove that for any positive real number M there exist a positive integer d so that for any monic polynomial $Q(x)$ with degree at least d the number of integers k so that $|P(Q(k))| \leq M$ is at most equal to the degree of Q.

