AoPS Community

Silk Road Mathematics Competiton 2003

www.artofproblemsolving.com/community/c714757 by Ovchinnikov Denis

1 Let $a_{1}, a_{2}, \ldots . ., a_{2003}$ be sequence of reals number.
Call a_{k} leading element, if at least one of expression $a_{k} ; a_{k}+a_{k+1} ; a_{k}+a_{k+1}+a_{k+2} ; \ldots ; a_{k}+$ $a k+1+a_{k+2}+\ldots .+a_{2003}$ is positive.
Prove, that if exist at least one leading element, then sum of all leading's elements is positive.
Official solution here (http://www. artof problemsolving.com/Forum/viewtopic.php?f=125 \} \&t=365714
\&p=201165
\#p2011659)

2 Let $s=\frac{A B+B C+A C}{2}$ be half-perimeter of triangle $A B C$. Let L and N be a point's on ray's $A B$ and $C B$, for which $A L=C N=s$. Let K is point, symmetric of point B by circumcenter of $A B C$. Prove, that perpendicular from K to $N L$ passes through incenter of $A B C$.
Solution for problem here(http://www.artofproblemsolving.com/Forum/viewtopic.php?f= $125 \backslash \& t=365714 \backslash \& p=201165 \backslash \# p 2011659$)

3 Let $0<a<b<1$ be reals numbers and

$$
g(x)=\left\{\begin{array}{cc}
x+1-a, & \text { if } 0<x<b \\
b-a, & \text { if } x=a \\
x-a, & \text { if } a<x<b \\
1-a, & \text { if } x=b \\
x-a, & \text { if } b<x<1
\end{array}\right.
$$

Give that there exist $n+1$ reals numbers $0<x_{0}<x_{1}<\ldots<x_{n}<1$, for which $g^{[n]}\left(x_{i}\right)=x_{i}(0 \leq$ $i \leq n)$. Prove that there exists a positive integer N, such that $g^{[N]}(x)=x$ for all $0<x<1$.
$(g^{[n]}(x)=\underbrace{g(g(\ldots(g(x)) \ldots))}_{n \text { times }})$
Official solution here (http://www.artof problemsolving.com/Forum/viewtopic.php?f=125\} \&t $=365714 \backslash \& p=201165 \backslash \# p 2011659$)

4 Find $\sum_{k \in A} \frac{1}{k-1}$ where $A=\left\{m^{n}: m, n \in \mathbb{Z} m, n \geq 2\right\}$.
Problem was post earlier here (http://www. artofproblemsolving.com/Forum/viewtopic.php? $\mathrm{f}=67 \backslash$ \&t $=29456 \backslash \& h i l i t=$ silk+road), but solution not gives and olympiad doesn't indicate, so I post it again :blush:

Official solution here(http://www.artof problemsolving.com/Forum/viewtopic.php?f=125\} \&t=365714
\&p=201165
\#p2011659)

