AoPS Community

Silk Road Mathematics Competiton 2006

www.artofproblemsolving.com/community/c714776
by Ovchinnikov Denis, spider_boy

1 Found all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, such that for any $x, y \in \mathbb{R}$,

$$
f\left(x^{2}+x y+f(y)\right)=f^{2}(x)+x f(y)+y .
$$

2 For positive a, b, c, such that $a b c=1$ prove the inequality: $4\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}\right) \leq 3(2+a+b+$ $\left.c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{\frac{2}{3}}$.

3 A subset S of the set $M=\{1,2, \ldots . ., p-1\}$, where p is a prime number of the kind $12 n+11$,is essential,if the product Π_{s} of all elements of the subset is not less than the product $\bar{\Pi}_{s}$ of all other elements of the set. The difference $\triangle_{s}=\Pi_{s}-\bar{\Pi}_{s}$ is called the deviation
of the subset S.Define the least possible remainder of division by p of the deviation of an essential subset,containing $\frac{p-1}{2}$ elements.

4 A family L of 2006 lines on the plane is given in such a way that it doesn't contain parallel lines and it doesn't contain three lines with a common point. We say that the line $l_{1} \in L$ is bounding the line $l_{2} \in L$,if all intersection points of the line l_{2} with other lines from L lie on the one side of the line l_{1}.
Prove that in the family L there are two lines l and l^{\prime} such that the following 2 conditions are satisfied simultaneously:

1) The line l is bounding the line l^{\prime};
2) the line l^{\prime} is not bounding the line l.
