## AoPS Community

## Silk Road Mathematics Competiton 2018

www.artofproblemsolving.com/community/c714813
by parmenides51, ThE-dArK-IOrD

1 In an acute-angled triangle $A B C$ on the sides $A B, B C, A C$ the points $H, L, K$ so that $C H \perp A B$, $H L\|A C, H K\| B C$. Let $P$ and $Q$ feet of altitudes of a triangle $H B L$, drawn from the vertices $H$ and $B$ respectively. Prove that the feet of the altitudes of the triangle $A K H$, drawn from the vertices $A$ and $H$ lie on the line $P Q$.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for any real number $x$ the equalities are true: $f(x+1)=$ $1+f(x)$ and $f\left(x^{4}-x^{2}\right)=f^{4}(x)-f^{2}(x)$.
source (http://matol.kz/comments/3373/show)
3 Given the natural $n$. We shall call word sequence from $n$ letters of the alphabet, and distance $\rho(A, B)$ between words $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{n}$, the number of digits in which they differ (that is, the number of such $i$, for which $a_{i} \neq b_{i}$ ). We will say that the word $C$ lies between words $A$ and $B$, if $\rho(A, B)=\rho(A, C)+\rho(C, B)$. What is the largest number of words you can choose so that among any three, there is a word lying between the other two?

4 Does there exist a sequence of positive integers $a_{1}, a_{2}, \ldots$ such that every positive integer occurs exactly once and that the number $\tau\left(n a_{n+1}^{n}+(n+1) a_{n}^{n+1}\right)$ is divisible by $n$ for all positive integer.

Here $\tau(n)$ denotes the number of positive divisor of $n$.

