AoPS Community

Silk Road Mathematics Competiton 2008

www.artofproblemsolving.com/community/c714814
by TTsphn, r1234, parmenides51, Niichavo

1 Suppose $a, c, d \in N$ and $d \mid a^{2} b+c$ and $d \geq a+c$
Prove that $d \geq a+\sqrt[2 b]{a}$
2 In a triangle $A B C A_{0}, B_{0}$ and C_{0} are the midpoints of the sides $B C, C A$ and $A B \cdot A_{1}, B_{1}, C_{1}$ are the midpoints of the broken lines $B A C, C A B, A B C$. Show that $A_{0} A_{1}, B_{0} B_{1}, C_{0} C_{1}$ are concurrent.

3 Let G be a graph with $2 n$ vertexes and $2 n(n-1)$ edges. If we color some edge to red,then vertexes, which are connected by this edge,must be colored to red too. But not necessary that all edges from the red vertex are red.
Prove that it is possible to color some vertexes and edges in G,such that all red vertexes has exactly n red edges.

4 Find all polynomials $P \in \mathbb{R}[x]$ such that for all $r \in \mathbb{Q}$, there exist $d \in \mathbb{Q}$ such that $P(d)=r$

