AoPS Community

Silk Road Mathematics Competiton 2009

www.artofproblemsolving.com/community/c714830
by math707, Ulanbek_Kyzylorda KTL, parmenides51

1 Prove that, abc 1 and $\mathrm{a}, \mathrm{b}, \mathrm{c}<0$

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 1+\frac{6}{a+b+c}
$$

2 Bisectors of triangle $A B C$ of an angles A and C intersect with $B C$ and $A B$ at points $A 1$ and $C 1$ respectively. Lines $A A 1$ and $C C 1$ intersect circumcircle of triangle $A B C$ at points $A 2$ and $C 2$ respectively. K is intersection point of C1A2 and $A 1 C 2$. I is incenter of $A B C$. Prove that the line KI divides AC into two equal parts.

3 A tourist going to visit the Complant, found that:
a) in this country 1024 cities, numbered by integers from 0 to 1023 ,
b) two cities with numbers m and n are connected by a straight line if and only if the binary entries of numbers m and n they differ exactly in one digit,
c) during the stay of a tourist in that country 8 roads will be closed for scheduled repairs. Prove that a tourist can make a closed route along the existing roads of Complant, passing through each of its cities exactly once.

4 Prove that for any prime number p there are infinitely many fours (x, y, z, t) pairwise distinct natural numbers such that the number $\left(x^{2}+p t^{2}\right)\left(y^{2}+p t^{2}\right)\left(z^{2}+p t^{2}\right)$ is a perfect square.

