AoPS Community

Silk Road Mathematics Competiton 2011

www.artofproblemsolving.com/community/c714832
by izat, parmenides51

1 Determine the smallest possible value of $\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5}\right|$, where $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ sets simultaneously satisfying the following conditions: $(i)\left|A_{i} \cap A_{j}\right|=1$ for all $1 \leq i<j \leq 5$, i.e. any two distinct sets contain exactly one element in common; (ii) $A_{i} \cap A_{j} \cap A_{k} \cap A_{l}=\varnothing$ for all $1 \leq i<j<k<l \leq 5$, i.e. any four different sets contain no common element.
Where $|S|$ means the number of elements of S.
2 Given an isosceles triangle $A B C$ with base $A B$. Point K is taken on the extension of the side $A C$ (beyond the point C) so that $\angle K B C=\angle A B C$. Denote S the intersection point of angle - bisectors of $\angle B K C$ and $\angle A C B$. Lines $A B$ and $K S$ intersect at point L, lines $B S$ and $C L$ intersect at point M. Prove that line $K M$ passes through the midpoint of the segment $B C$.

3 For all $a, b, c \in R^{+}$such that $a+b+c=1$ and

$$
\left(\frac{1}{(a+b)^{2}}+\frac{1}{(b+c)^{2}}+\frac{1}{(c+a)^{2}}\right)(a-b c)(b-a c)(c-a b) \leq M \cdot a b c .
$$

Find $\min M$.
4 Prove that there are infinitely many primes representable in the form $m^{2}+m n+n^{2}$ for some integers m, n.

