AoPS Community

Silk Road Mathematics Competiton 2012

www.artofproblemsolving.com/community/c714833
by parmenides51

1 Trapezium $A B C D$, where $B C \| A D$, is inscribed in a circle, E is midpoint of the arc $A D$ of this circle not containing point C. Let F be the foot of the perpendicular drawn from E on the line tangent to the circle at the point C. Prove that $B C=2 C F$.

2 In each cell of the table 4×4, in which the lines are labeled with numbers $1,2,3,4$, and columns with letters a, b, c, d, one number is written: 0 or 1 . Such a table is called valid if there are exactly two units in each of its rows and in each column. Determine the number of valid tables.

3 Let $n>1$ be an integer.
Determine the greatest common divisor of the set of numbers $\left\{\binom{2 n}{2 i+1}: 0 \leq i \leq n-1\right\}$
i.e. the largest positive integer, dividing $\binom{2 n}{2 i+1}$ without remainder for every $i=0,1, \ldots, n-1$.
(Here $\binom{m}{l}=\mathrm{C}_{m}^{l}=\frac{m!}{l!(m-l)!}$ is binomial coefficient.)
4 Prove that for any positive integer n, the arithmetic mean of $\sqrt[1]{1}, \sqrt[2]{2}, \sqrt[3]{3}, \ldots, \sqrt[n]{n}$ lies in $\left[1,1+\frac{2 \sqrt{2}}{\sqrt{n}}\right]$

