AoPS Community

Silk Road Mathematics Competiton 2013

www.artofproblemsolving.com/community/c714838
by izat, parmenides51, ts0_9

1 Determine all pairs of positive integers m, n, satisfying the equality $\left(2^{m}+1 ; 2^{n}+1\right)=2^{(m ; n)}+1$, where $(a ; b)$ is the greatest common divisor

2 Circle with center I, inscribed in a triangle $A B C$, touches the sides $B C$ and $A C$ at points A_{1} and B_{1} respectively. On rays $A_{1} I$ and $B_{1} I$, respectively, let be the points A_{2} and B_{2} such that $I A_{2}=I B_{2}=R$, where R is the radius of the circumscribed circle of the triangle $A B C$. Prove that:
a) $A A_{2}=B B_{2}=O I$ where O is the center of the circumscribed circle of the triangle $A B C$,
b) lines $A A_{2}$ and $B B_{2}$ intersect on the circumcircle of the triangle $A B C$.
$3 \quad$ Find all non-decreasing functions $f: \mathbb{N} \rightarrow \mathbb{N}$, such that $f(f(m) f(n)+m)=f(m f(n))+f(m)$
4 In the film there is n roles. For each $i(1 \leq i \leq n)$, the role of number i can play a_{i} a person, and one person can play only one role. Every day a casting is held, in which participate people for n roles, and from each role only one person. Let p be a prime number such that $p \geq a_{1}, \ldots, a_{n}, n$. Prove that you can have p^{k} castings such that if we take any k people who are tried in different roles, they together participated in some casting (k is a natural number not exceeding n).

