2013 Silk Road

AoPS Community

Silk Road Mathematics Competiton 2013

www.artofproblemsolving.com/community/c714838 by izat, parmenides51, ts0_9

- 1 Determine all pairs of positive integers m, n, satisfying the equality $(2^m + 1; 2^n + 1) = 2^{(m;n)} + 1$, where (a; b) is the greatest common divisor
- 2 Circle with center *I*, inscribed in a triangle *ABC*, touches the sides *BC* and *AC* at points A_1 and B_1 respectively. On rays A_1I and B_1I , respectively, let be the points A_2 and B_2 such that $IA_2 = IB_2 = R$, where *R* is the radius of the circumscribed circle of the triangle *ABC*. Prove that: a) $AA_2 = BB_2 = OI$ where *O* is the center of the circumscribed circle of the triangle *ABC*.

a) $AA_2 = BB_2 = OI$ where O is the center of the circumscribed circle of the triangle ABC, b) lines AA_2 and BB_2 intersect on the circumcircle of the triangle ABC.

- **3** Find all non-decreasing functions $f : \mathbb{N} \to \mathbb{N}$, such that f(f(m)f(n) + m) = f(mf(n)) + f(m)
- 4 In the film there is n roles. For each i $(1 \le i \le n)$, the role of number i can play a_i a person, and one person can play only one role. Every day a casting is held, in which participate people for n roles, and from each role only one person. Let p be a prime number such that $p \ge a_1, \ldots, a_n, n$. Prove that you can have p^k castings such that if we take any k people who are tried in different roles, they together participated in some casting (k is a natural number not exceeding n).

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱