AoPS Community

Silk Road Mathematics Competiton 2015

www.artofproblemsolving.com/community/c714844
by MRF2017, parmenides51, rightways

1 Prove that there is no positive real numbers a, b, c, d such that both of the following equations hold.

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=6, \frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}=32
$$

2 Let $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ be two infinite arithmetic progressions, each of which the first term and the difference are mutually prime natural numbers. It is known that for any natural n, at least one of the numbers $\left(a_{n}^{2}+a_{n+1}^{2}\right)\left(b_{n}^{2}+b_{n+1}^{2}\right)$ or $\left(a_{n}^{2}+b_{n}^{2}\right)\left(a_{n+1}^{2}+b_{n+1}^{2}\right)$ is an perfect square. Prove that $a_{n}=b_{n}$, for any natural n.

3 Let B_{n} be the set of all sequences of length n, consisting of zeros and ones. For every two sequences $a, b \in B_{n}$ (not necessarily different) we define strings $\varepsilon_{0} \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}$ and $\delta_{0} \delta_{1} \delta_{2} \ldots \delta_{n}$ such that $\varepsilon_{0}=\delta_{0}=0$ and

$$
\varepsilon_{i+1}=\left(\delta_{i}-a_{i+1}\right)\left(\delta_{i}-b_{i+1}\right), \quad \delta_{i+1}=\delta_{i}+(-1)^{\delta_{i}} \varepsilon_{i+1} \quad(0 \leq i \leq n-1)
$$

. Let $w(a, b)=\varepsilon_{0}+\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n}$. Find $f(n)=\sum_{a, b \in B_{n}} w(a, b)$.
4 Let O be a circumcenter of an acute-angled triangle $A B C$. Consider two circles ω and Ω inscribed in the angle $\angle B A C$ in such way that ω is tangent from the outside to the arc $B O C$ of a circle circumscribed about the triangle $B O C$, and the circle Ω is tangent internally to a circumcircle of triangle $A B C$. Prove that the radius of Ω is twice the radius ω.
$\mathbf{1}$ (original) Given positive real numbers a, b, c, d such that

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=6 \quad \text { and } \quad \frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}=36 .
$$

Prove the inequality
$a^{2}+b^{2}+c^{2}+d^{2}>a b+a c+a d+b c+b d+c d$.

