## AoPS Community

## Silk Road Mathematics Competiton 2016

www.artofproblemsolving.com/community/c714845
by MRF2017, parmenides51

1 Let $a, b$ and $c$ be real numbers such that $|(a-b)(b-c)(c-a)|=1$. Find the smallest value of the expression $|a|+|b|+|c|$. (K.Satylhanov )

2 Around the acute-angled triangle $A B C(A C>C B)$ a circle is circumscribed, and the point $N$ is midpoint of the arc $A C B$ of this circle. Let the points $A_{1}$ and $B_{1}$ be the feet of perpendiculars on the straight line $N C$, drawn from points $A$ and $B$ respectively (segment $N C$ lies inside the segment $A_{1} B_{1}$ ). Altitude $A_{1} A_{2}$ of triangle $A_{1} A C$ and altitude $B_{1} B_{2}$ of triangle $B_{1} B C$ intersect at a point $K$. Prove that $\angle A_{1} K N=\angle B_{1} K M$, where $M$ is midpoint of the segment $A_{2} B_{2}$.

3 Given natural numbers $a, b$ and function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any natural number $n, f(n+a)$ is divided by $f([\sqrt{n}]+b)$. Prove that for any natural $n$ exist $n$ pairwise distinct and pairwise relatively prime natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that the number $f\left(a_{i+1}\right)$ is divided by $f\left(a_{i}\right)$ for each $i=1,2, \ldots, n-1$.
(Here $[x]$ is the integer part of number $x$, that is, the largest integer not exceeding $x$.)
4 Let $P(n)$ be the number of ways to split a natural number $n$ to the sum of powers of two, when the order does not matter. For example $P(5)=4$, as $5=4+1=2+2+1=2+1+1+1=$ $1+1+1+1+1$. Prove that for any natural the identity $P(n)+(-1)^{a_{1}} P(n-1)+(-1)^{a_{2}} P(n-2)+$ $\ldots+(-1)^{a_{n-1}} P(1)+(-1)^{a_{n}}=0$, is true, where $a_{k}$ is the number of units in the binary number record $k$.
source (http://matol.kz/comments/2720/show)

