

AoPS Community

Silk Road Mathematics Competiton 2016

www.artofproblemsolving.com/community/c714845 by MRF2017, parmenides51

- 1 Let a, b and c be real numbers such that |(a b)(b c)(c a)| = 1. Find the smallest value of the expression |a| + |b| + |c|. (K.Satylhanov)
- **2** Around the acute-angled triangle ABC (AC > CB) a circle is circumscribed, and the point N is midpoint of the arc ACB of this circle. Let the points A_1 and B_1 be the feet of perpendiculars on the straight line NC, drawn from points A and B respectively (segment NC lies inside the segment A_1B_1). Altitude A_1A_2 of triangle A_1AC and altitude B_1B_2 of triangle B_1BC intersect at a point K. Prove that $\angle A_1KN = \angle B_1KM$, where M is midpoint of the segment A_2B_2 .
- **3** Given natural numbers a, b and function $f : \mathbb{N} \to \mathbb{N}$ such that for any natural number n, f(n+a) is divided by $f([\sqrt{n}] + b)$. Prove that for any natural n exist n pairwise distinct and pairwise relatively prime natural numbers a_1, a_2, \ldots, a_n such that the number $f(a_{i+1})$ is divided by $f(a_i)$ for each $i = 1, 2, \ldots, n-1$.

(Here [x] is the integer part of number x, that is, the largest integer not exceeding x.)

4 Let P(n) be the number of ways to split a natural number n to the sum of powers of two, when the order does not matter. For example P(5) = 4, as 5 = 4 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1. Prove that for any natural the identity $P(n) + (-1)^{a_1}P(n-1) + (-1)^{a_2}P(n-2) + \dots + (-1)^{a_{n-1}}P(1) + (-1)^{a_n} = 0$, is true, where a_k is the number of units in the binary number record k.

source (http://matol.kz/comments/2720/show)

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.