

2017 India IMO Training Camp

India International Mathematical Olympiad Training Camp 2017

www.artofproblemsolving.com/community/c715128

by parmenides51, anantmudgal09, cjquines0, MathStudent2002

-	Practice Tests
-	Practice Test 1
1	Let $P_c(x) = x^4 + ax^3 + bx^2 + cx + 1$ and $Q_c(x) = x^4 + cx^3 + bx^2 + ax + 1$ with a, b real numbers, $c \in \{1, 2,, 2017\}$ an integer and $a \neq c$. Define $A_c = \{\alpha P_c(\alpha) = 0\}$ and $B_c = \{\beta P(\beta) = 0\}$.
	(a) Find the number of unordered pairs of polynomials $P_c(x)$, $Q_c(x)$ with exactly two common roots.
	(b) For any $1 \le c \le 2017$, find the sum of the elements of $A_c \Delta B_c$.
2	Find all positive integers $p, q, r, s > 1$ such that
	$p! + q! + r! = 2^s.$
3	Let $ABCD$ be a cyclic quadrilateral inscribed in circle Ω with $AC \perp BD$. Let $P = AC \cap BD$ and W, X, Y, Z be the projections of P on the lines AB, BC, CD, DA respectively. Let E, F, G, H be the mid-points of sides AB, BC, CD, DA respectively.
	(a) Prove that E, F, G, H, W, X, Y, Z are concyclic.
	(b) If R is the radius of Ω and d is the distance between its centre and P , then find the radius of the circle in (a) in terms of R and d .
-	Practice Test 2
1	In an acute triangle <i>ABC</i> , points <i>D</i> and <i>E</i> lie on side <i>BC</i> with <i>BD</i> < <i>BE</i> . Let $O_1, O_2, O_3, O_4, O_5, C$ be the circumcenters of triangles <i>ABD</i> , <i>ADE</i> , <i>AEC</i> , <i>ABE</i> , <i>ADC</i> , <i>ABC</i> , respectively. Prove that O_1, O_3, O_4, O_5 are con-cyclic if and only if A, O_2, O_6 are collinear.
2	Let a, b, c, d be pairwise distinct positive integers such that
	$\frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+d} + \frac{d}{d+a}$
	is an integer. Prove that $a + b + c + d$ is not a prime number.

2017 India IMO Training Camp

3 There are n lamps L_1, L_2, \ldots, L_n arranged in a circle in that order. At any given time, each lamp is either *on* or *off*. Every second, each lamp undergoes a change according to the following rule:

(a) For each lamp L_i , if L_{i-1}, L_i, L_{i+1} have the same state in the previous second, then L_i is *off* right now. (Indices taken mod n.)

(b) Otherwise, L_i is on right now.

Initially, all the lamps are *off*, except for L_1 which is *on*. Prove that for infinitely many integers n all the lamps will be *off* eventually, after a finite amount of time.

-	Team Selection Tests
-	TST 1

1 Let a, b, c be distinct positive real numbers with abc = 1. Prove that

$$\sum_{cyc} \frac{a^6}{(a-b)(a-c)} > 15.$$

- **2** Define a sequence of integers $a_0 = m$, $a_1 = n$ and $a_{k+1} = 4a_k 5a_{k-1}$ for all $k \ge 1$. Suppose p > 5 is a prime with $p \equiv 1 \pmod{4}$. Prove that it is possible to choose m, n such that $p \nmid a_k$ for any $k \ge 0$.
- **3** Let $n \ge 1$ be a positive integer. An $n \times n$ matrix is called *good* if each entry is a non-negative integer, the sum of entries in each row and each column is equal. A *permutation* matrix is an $n \times n$ matrix consisting of n ones and n(n-1) zeroes such that each row and each column has exactly one non-zero entry.

Prove that any good matrix is a sum of finitely many permutation matrices.

-	TST 2
1	Suppose $f, g \in \mathbb{R}[x]$ are non constant polynomials. Suppose neither of f, g is the square of a real polynomial but $f(g(x))$ is. Prove that $g(f(x))$ is not the square of a real polynomial.
2	Let n be a positive integer relatively prime to 6. We paint the vertices of a regular n -gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.
3	Let $B = (-1,0)$ and $C = (1,0)$ be fixed points on the coordinate plane. A nonempty, bounded subset S of the plane is said to be <i>nice</i> if
	(i) there is a point T in S such that for every point Q in S , the segment TQ lies entirely in S ; and

2017 India IMO Training Camp

(ii) for any triangle $P_1P_2P_3$, there exists a unique point A in S and a permutation σ of the indices $\{1, 2, 3\}$ for which triangles ABC and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar.

Prove that there exist two distinct nice subsets S and S' of the set $\{(x, y) : x \ge 0, y \ge 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in (ii), then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

TST 3

1 Find all positive integers *n* for which all positive divisors of *n* can be put into the cells of a rectangular table under the following constraints:

-each cell contains a distinct divisor; -the sums of all rows are equal; and -the sums of all columns are equal.

- **2** Let ABC be a triangle with $AB = AC \neq BC$ and let *I* be its incentre. The line *BI* meets *AC* at *D*, and the line through *D* perpendicular to *AC* meets *AI* at *E*. Prove that the reflection of *I* in *AC* lies on the circumcircle of triangle *BDE*.
- **3** Prove that for any positive integers *a* and *b* we have

$$a + (-1)^b \sum_{m=0}^a (-1)^{\lfloor \frac{bm}{a} \rfloor} \equiv b + (-1)^a \sum_{n=0}^b (-1)^{\lfloor \frac{an}{b} \rfloor} \pmod{4}$$

- TST 4

- 1 Let ABC be an acute angled triangle with incenter *I*. Line perpendicular to *BI* at *I* meets *BA* and *BC* at points *P* and *Q* respectively. Let *D*, *E* be the incenters of $\triangle BIA$ and $\triangle BIC$ respectively. Suppose *D*, *P*, *Q*, *E* lie on a circle. Prove that AB = BC.
- **2** For each $n \ge 2$ define the polynomial

$$f_n(x) = x^n - x^{n-1} - \dots - x - 1.$$

Prove that

(a) For each $n \ge 2$, $f_n(x) = 0$ has a unique positive real root α_n ;

(b) $(\alpha_n)_n$ is a strictly increasing sequence;

(c) $\lim_{n\to\infty} \alpha_n = 2$.

2017 India IMO Training Camp

3 Let *a* be a positive integer which is not a perfect square, and consider the equation

$$k = \frac{x^2 - a}{x^2 - y^2}.$$

Let *A* be the set of positive integers *k* for which the equation admits a solution in \mathbb{Z}^2 with $x > \sqrt{a}$, and let *B* be the set of positive integers for which the equation admits a solution in \mathbb{Z}^2 with $0 \le x < \sqrt{a}$. Show that A = B.

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬