Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2017

www.artofproblemsolving.com/community/c715128
by parmenides51, anantmudgal09, cjquines0, MathStudent2002

- Practice Tests
- \quad Practice Test 1

1 Let $P_{c}(x)=x^{4}+a x^{3}+b x^{2}+c x+1$ and $Q_{c}(x)=x^{4}+c x^{3}+b x^{2}+a x+1$ with a, b real numbers, $c \in\{1,2, \ldots, 2017\}$ an integer and $a \neq c$. Define $A_{c}=\left\{\alpha \mid P_{c}(\alpha)=0\right\}$ and $B_{c}=\{\beta \mid P(\beta)=0\}$.
(a) Find the number of unordered pairs of polynomials $P_{c}(x), Q_{c}(x)$ with exactly two common roots.
(b) For any $1 \leq c \leq 2017$, find the sum of the elements of $A_{c} \Delta B_{c}$.

2 Find all positive integers $p, q, r, s>1$ such that

$$
p!+q!+r!=2^{s}
$$

3 Let $A B C D$ be a cyclic quadrilateral inscribed in circle Ω with $A C \perp B D$. Let $P=A C \cap B D$ and W, X, Y, Z be the projections of P on the lines $A B, B C, C D, D A$ respectively. Let E, F, G, H be the mid-points of sides $A B, B C, C D, D A$ respectively.
(a) Prove that E, F, G, H, W, X, Y, Z are concyclic.
(b) If R is the radius of Ω and d is the distance between its centre and P, then find the radius of the circle in (a) in terms of R and d.

- \quad Practice Test 2

1 In an acute triangle $A B C$, points D and E lie on side $B C$ with $B D<B E$. Let $O_{1}, O_{2}, O_{3}, O_{4}, O_{5}, O_{6}$ be the circumcenters of triangles $A B D, A D E, A E C, A B E, A D C, A B C$, respectively. Prove that $O_{1}, O_{3}, O_{4}, O_{5}$ are con-cyclic if and only if A, O_{2}, O_{6} are collinear.

2 Let a, b, c, d be pairwise distinct positive integers such that

$$
\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}
$$

is an integer. Prove that $a+b+c+d$ is not a prime number.

AoPS Community

2017 India IMO Training Camp

3 There are n lamps $L_{1}, L_{2}, \ldots, L_{n}$ arranged in a circle in that order. At any given time, each lamp is either on or off. Every second, each lamp undergoes a change according to the following rule:
(a) For each lamp L_{i}, if L_{i-1}, L_{i}, L_{i+1} have the same state in the previous second, then L_{i} is off right now. (Indices taken mod n.)
(b) Otherwise, L_{i} is on right now.

Initially, all the lamps are off, except for L_{1} which is on. Prove that for infinitely many integers n all the lamps will be off eventually, after a finite amount of time.

- Team Selection Tests
- TST 1

1 Let a, b, c be distinct positive real numbers with $a b c=1$. Prove that

$$
\sum_{\text {cyc }} \frac{a^{6}}{(a-b)(a-c)}>15 .
$$

2 Define a sequence of integers $a_{0}=m, a_{1}=n$ and $a_{k+1}=4 a_{k}-5 a_{k-1}$ for all $k \geq 1$. Suppose $p>5$ is a prime with $p \equiv 1(\bmod 4)$. Prove that it is possible to choose m, n such that $p \nmid a_{k}$ for any $k \geq 0$.

3 Let $n \geq 1$ be a positive integer. An $n \times n$ matrix is called good if each entry is a non-negative integer, the sum of entries in each row and each column is equal. A permutation matrix is an $n \times n$ matrix consisting of n ones and $n(n-1)$ zeroes such that each row and each column has exactly one non-zero entry.

Prove that any good matrix is a sum of finitely many permutation matrices.

- TST 2

1 Suppose $f, g \in \mathbb{R}[x]$ are non constant polynomials. Suppose neither of f, g is the square of a real polynomial but $f(g(x))$ is. Prove that $g(f(x))$ is not the square of a real polynomial.

2 Let n be a positive integer relatively prime to 6 . We paint the vertices of a regular n-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

3 Let $B=(-1,0)$ and $C=(1,0)$ be fixed points on the coordinate plane. A nonempty, bounded subset S of the plane is said to be nice if
(i) there is a point T in S such that for every point Q in S, the segment $T Q$ lies entirely in S; and
(ii) for any triangle $P_{1} P_{2} P_{3}$, there exists a unique point A in S and a permutation σ of the indices $\{1,2,3\}$ for which triangles $A B C$ and $P_{\sigma(1)} P_{\sigma(2)} P_{\sigma(3)}$ are similar.
Prove that there exist two distinct nice subsets S and S^{\prime} of the set $\{(x, y): x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A^{\prime} \in S^{\prime}$ are the unique choices of points in (ii), then the product $B A \cdot B A^{\prime}$ is a constant independent of the triangle $P_{1} P_{2} P_{3}$.

- TST 3

1 Find all positive integers n for which all positive divisors of n can be put into the cells of a rectangular table under the following constraints:
-each cell contains a distinct divisor; -the sums of all rows are equal; and -the sums of all columns are equal.

2 Let $A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incentre. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meets $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.

3 Prove that for any positive integers a and b we have

$$
a+(-1)^{b} \sum_{m=0}^{a}(-1)^{\left\lfloor\frac{b m}{a}\right\rfloor} \equiv b+(-1)^{a} \sum_{n=0}^{b}(-1)^{\left\lfloor\frac{a n}{b}\right\rfloor} \quad(\bmod 4)
$$

- TST 4

1 Let $A B C$ be an acute angled triangle with incenter I. Line perpendicular to $B I$ at I meets $B A$ and $B C$ at points P and Q respectively. Let D, E be the incenters of $\triangle B I A$ and $\triangle B I C$ respectively. Suppose D, P, Q, E lie on a circle. Prove that $A B=B C$.

2 For each $n \geq 2$ define the polynomial

$$
f_{n}(x)=x^{n}-x^{n-1}-\cdots-x-1
$$

Prove that
(a) For each $n \geq 2, f_{n}(x)=0$ has a unique positive real root α_{n};
(b) $\left(\alpha_{n}\right)_{n}$ is a strictly increasing sequence;
(c) $\lim _{n \rightarrow \infty} \alpha_{n}=2$.

3 Let a be a positive integer which is not a perfect square, and consider the equation

$$
k=\frac{x^{2}-a}{x^{2}-y^{2}}
$$

Let A be the set of positive integers k for which the equation admits a solution in \mathbb{Z}^{2} with $x>\sqrt{a}$, and let B be the set of positive integers for which the equation admits a solution in \mathbb{Z}^{2} with $0 \leq x<\sqrt{a}$. Show that $A=B$.

