AoPS Community

ITAMO 2018
www.artofproblemsolving.com/community/c715847
by goldenturtle, parmenides51, FedeX333X

1 1.A bottle in the shape of a cone lies on its base. Water is poured into the bottle until its level reaches a distance of 8 centimeters from the vertex of the cone (measured vertically). We now turn the bottle upside down without changing the amount of water it contains; This leaves an empty space in the upper part of the cone that is 2 centimeters high.

Find the height of the bottle.
2 Let $A B C$ be an acute-angeled triangle, non-isosceles and with barycentre G (which is, in fact, the intersection of the medians). Let M be the midpoint of $B C$, and let Ω be the circle with centre G and radius $G M$, and let N be the point of intersection between Ω and $B C$ that is distinct from M. Let S be the symmetric point of A with respect to N, that is, the point on the line $A N$ such that $A N=N S$. Prove that $G S$ is perpendicular to $B C$.

3 Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive integers,Asumme that in their decimal representations no x_{i} "prolongs" x_{j}.For instance, 123 prolongs 12,459 prolongs 4 , but 124 does not prolog 123.
Prove that : $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}<3$.
4 4. Let N be an integer greater than 1.Denote by x the smallest positive integer with the following property:there exists a positive integer y strictly less than $x-1$, such that x divides $N+y$.Prove that x is either p^{n} or $2 p$, where p is a prime number and n is a positive integer

5 5.Let x be a real number with $0<x<1$ and let $0 . c_{1} c_{2} c_{3} \ldots$ be the decimal expansion of x .Denote by $B(x)$ the set of all subsequences of $c_{1} c_{2} c_{3}$ that consist of 6 consecutive digits.
For instance, $B\left(\frac{1}{22}\right)=045454,454545,545454$
Find the minimum number of elements of $B(x)$ as x varies among all irrational numbers with $0<x<1$

6 Let $A B C$ be a triangle with $A B=A C$ and let I be its incenter. Let Γ be the circumcircle of $A B C$. Lines $B I$ and $C I$ intersect Γ in two new points, M and N respectively. Let D be another point on Γ lying on arc $B C$ not containing A, and let E, F be the intersections of $A D$ with $B I$ and $C I$, respectively. Let P, Q be the intersections of $D M$ with $C I$ and of $D N$ with $B I$ respectively.
(i) Prove that D, I, P, Q lie on the same circle Ω
(ii) Prove that lines $C E$ and $B F$ intersect on Ω

