

AoPS Community

2018 Cono Sur Olympiad

Cono Sur Olympiad 2018

www.artofproblemsolving.com/community/c716298 by parmenides51, mathisreal

-	Day 1
1	Let $ABCD$ be a convex quadrilateral, where R and S are points in DC and AB , respectively, such that $AD = RC$ and $BC = SA$. Let P , Q and M be the midpoints of RD , BS and CA , respectively. If $\angle MPC + \angle MQA = 90$, prove that $ABCD$ is cyclic.
2	Prove that every positive integer can be formed by the sums of powers of 3, 4 and 7, where do not appear two powers of the same number and with the same exponent. Example: $2 = 7^0 + 7^0$ and $22 = 3^2 + 3^2 + 4^1$ are not valid representations, but $2 = 3^0 + 7^0$ and $22 = 3^2 + 3^0 + 4^1 + 4^0 + 7^1$ are valid representations.
3	Define the product $P_n = 1! \cdot 2! \cdot 3! \cdots (n-1)! \cdot n!$ a) Find all positive integers m , such that $\frac{P_{2020}}{m!}$ is a perfect square. b) Prove that there are infinite many value(s) of n , such that $\frac{P_n}{m!}$ is a perfect square, for at least two positive integers m .
-	Day 2
4	For each interger $n \ge 4$, we consider the m subsets A_1, A_2, \ldots, A_m of $\{1, 2, 3, \ldots, n\}$, such that A_1 has exactly one element, A_2 has exactly two elements,, A_m has exactly m elements and none of these subsets is contained in any other set. Find the maximum value of m .
5	Let ABC be an acute-angled triangle with $\angle BAC = 60^{\circ}$ and with incenter I and circumcenter O . Let H be the point diametrically opposite(antipode) to O in the circumcircle of $\triangle BOC$. Prove that $IH = BI + IC$.
6	 A sequence a₁, a₂,, a_n of positive integers is alagoana, if for every n positive integer, one have these two conditions I- a_{n!} = a₁ · a₂ · a₃ · · · a_n II- The number a_n is the n-power of a positive integer. Find all the sequence(s) alagoana.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.