Art of Problem Solving

AoPS Community

Cono Sur Olympiad 2018

www.artofproblemsolving.com/community/c716298
by parmenides51, mathisreal

- Day 1

1 Let $A B C D$ be a convex quadrilateral, where R and S are points in $D C$ and $A B$, respectively, such that $A D=R C$ and $B C=S A$. Let P, Q and M be the midpoints of $R D, B S$ and $C A$, respectively. If $\angle M P C+\angle M Q A=90$, prove that $A B C D$ is cyclic.

2 Prove that every positive integer can be formed by the sums of powers of 3,4 and 7, where do not appear two powers of the same number and with the same exponent.
Example: $2=7^{0}+7^{0}$ and $22=3^{2}+3^{2}+4^{1}$ are not valid representations, but $2=3^{0}+7^{0}$ and $22=3^{2}+3^{0}+4^{1}+4^{0}+7^{1}$ are valid representations.

3 Define the product $P_{n}=1!\cdot 2!\cdot 3!\cdots(n-1)!\cdot n$!
a) Find all positive integers m, such that $\frac{P_{2020}}{m!}$ is a perfect square.
b) Prove that there are infinite many value(s) of n, such that $\frac{P_{n}}{m!}$ is a perfect square, for at least two positive integers m.

- Day 2

4 For each interger $n \geq 4$, we consider the m subsets $A_{1}, A_{2}, \ldots, A_{m}$ of $\{1,2,3, \ldots, n\}$, such that A_{1} has exactly one element, A_{2} has exactly two elements,...., A_{m} has exactly m elements and none of these subsets is contained in any other set. Find the maximum value of m.

5 Let $A B C$ be an acute-angled triangle with $\angle B A C=60^{\circ}$ and with incenter I and circumcenter O. Let H be the point diametrically opposite(antipode) to O in the circumcircle of $\triangle B O C$. Prove that $I H=B I+I C$.

6 A sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers is alagoana, if for every n positive integer, one have these two conditions
I- $a_{n!}=a_{1} \cdot a_{2} \cdot a_{3} \cdots a_{n}$
II- The number a_{n} is the n-power of a positive integer.
Find all the sequence(s) alagoana.

