Art of Problem Solving

AoPS Community

2002 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32002

www.artofproblemsolving.com/community/c716716
by parmenides51, mathsolver98

- Day 1

1 Determine all pairs (a, b) of positive integers for which $\frac{a^{2} b+b}{a b^{2}+9}$ is an integer number.
2 Let λ be a real number such that the inequality $0<\sqrt{2002}-\frac{a}{b}<\frac{\lambda}{a b}$ holds for an infinite number of pairs (a, b) of positive integers. Prove that $\lambda \geq 5$.

3 Let $A B C$ be a triangle with $\angle C=60^{\circ}$. The point P is the symmetric of A with respect to the point of tangency of the circle inscribed with the side $B C$. Show that if the perpendicular bisector of the $C P$ segment intersects the line containing the angle - bisector of $\angle B$ at the point Q, then the triangle $C P Q$ is equilateral.

- Day 2

4 Let a, b and c be positive real numbers. Show that $\frac{a+b}{c^{2}}+\frac{c+a}{b^{2}}+\frac{b+c}{a^{2}} \geq \frac{9}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
$5 \quad A B C$ is any triangle. Tangent at C to circumcircle (O) of $A B C$ meets $A B$ at M. Line perpendicular to $O M$ at M intersects $B C$ at P and $A C$ at Q. P.T. $M P=M Q$.

6 Daniel chooses a positive integer n and tells Ana. With this information, Ana chooses a positive integer k and tells Daniel. Daniel draws n circles on a piece of paper and chooses k different points on the condition that each of them belongs to one of the circles he drew. Then he deletes the circles, and only the k points marked are visible. From these points, Ana must reconstruct at least one of the circumferences that Daniel drew. Determine which is the lowest value of k that allows Ana to achieve her goal regardless of how Daniel chose the n circumferences and the k points.

