AoPS Community

Rioplatense Mathematical Olympiad, Level 32001

 www.artofproblemsolving.com/community/c716717 by parmenides 51 , mathisreal- Day 1

1 Find all integer numbers a, b, m and n, such that the following two equalities are verified: $a^{2}+$ $b^{2}=5 m n$ and $m^{2}+n^{2}=5 a b$

2 Let $A B C$ be an acute triangle and A_{1}, B_{1} and C_{1}, points on the sides $B C, C A$ and $A B$, respectively, such that $C B_{1}=A_{1} B_{1}$ and $B C_{1}=A_{1} C_{1}$. Let D be the symmetric of A_{1} with respect to $B_{1} C_{1}, O$ and O_{1} are the circumcenters of triangles $A B C$ and $A_{1} B_{1} C_{1}$, respectively. If $A \neq D, O \neq O_{1}$ and $A D$ is perpendicular to $O O_{1}$, prove that $A B=A C$.

3 For every integer $n>1$, the sequence $\left(S_{n}\right)$ is defined by $S_{n}=\lfloor 2^{n} \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}_{n \text { radicals }}\rfloor$ where $\lfloor x\rfloor$ denotes the floor function of x. Prove that $S_{2001}=2 S_{2000}+1$.

- Day 2
$4 \quad$ Find all functions $f: R \rightarrow R$ such that, for any $x, y \in R: f(f(x)-y) \cdot f(x+f(y))=x^{2}-y^{2}$
5 Let $A B C$ be a acute-angled triangle with centroid G, the angle bisector of $\angle A B C$ intersects $A C$ in D. Let P and Q be points in $B D$ where $\angle P B A=\angle P A B$ and $\angle Q B C=\angle Q C B$. Let M be the midpoint of $Q P$, let N be a point in the line $G M$ such that $G N=2 G M$ (where G is the segment $M N$), prove that: $\angle A N C+\angle A B C=180$

6 For $m=1,2,3, \ldots$ denote $S(m)$ the sum of the digits of m, and let $f(m)=m+S(m)$.
Show that for each positive integer n, there exists a number that appears exactly n times in the sequence $f(1), f(2), \ldots, f(m), \ldots$

