

AoPS Community

2001 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 3 2001

www.artofproblemsolving.com/community/c716717 by parmenides51, mathisreal

- Day 1
- **1** Find all integer numbers a, b, m and n, such that the following two equalities are verified: $a^2 + b^2 = 5mn$ and $m^2 + n^2 = 5ab$
- **2** Let *ABC* be an acute triangle and A_1, B_1 and C_1 , points on the sides *BC*, *CA* and *AB*, respectively, such that $CB_1 = A_1B_1$ and $BC_1 = A_1C_1$. Let *D* be the symmetric of A_1 with respect to B_1C_1, O and O_1 are the circumcenters of triangles *ABC* and $A_1B_1C_1$, respectively. If $A \neq D, O \neq O_1$ and *AD* is perpendicular to OO_1 , prove that AB = AC.
- **3** For every integer n > 1, the sequence (S_n) is defined by $S_n = \begin{bmatrix} 2^n \sqrt{2 + \sqrt{2 + ... + \sqrt{2}}} \\ \frac{\sqrt{2 + \sqrt{2 + ... + \sqrt{2}}}}{n \text{ radicals}} \end{bmatrix}$ where |x| denotes the floor function of x. Prove that $S_{2001} = 2S_{2000} + 1$.
- Day 2
- 4 Find all functions $f: R \to R$ such that, for any $x, y \in R$: $f(f(x) y) \cdot f(x + f(y)) = x^2 y^2$
- 5 Let *ABC* be a acute-angled triangle with centroid *G*, the angle bisector of $\angle ABC$ intersects *AC* in *D*. Let *P* and *Q* be points in *BD* where $\angle PBA = \angle PAB$ and $\angle QBC = \angle QCB$. Let *M* be the midpoint of *QP*, let *N* be a point in the line *GM* such that GN = 2GM (where *G* is the segment *MN*), prove that: $\angle ANC + \angle ABC = 180$
- **6** For m = 1, 2, 3, ... denote S(m) the sum of the digits of m, and let f(m) = m + S(m). Show that for each positive integer n, there exists a number that appears exactly n times in the sequence f(1), f(2), ..., f(m), ...

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.