AoPS Community

Rioplatense Mathematical Olympiad, Level 32000

www.artofproblemsolving.com/community/c716718
by parmenides51, mathisreal

- \quad Day 1
$1 \quad$ Let a and b be positive integers such that the number $b^{2}+(b+1)^{2}+\ldots+(b+a)^{2}-3$ is multiple of 5 and $a+b$ is odd. Calculate the digit of the units of the number $a+b$ written in decimal notation.

2 In a triangle $A B C$, points D, E and F are considered on the sides $B C, C A$ and $A B$ respectively, such that the areas of the triangles $A F E, B F D$ and $C D E$ are equal. Prove that

$$
\frac{(D E F)}{(A B C)} \geq \frac{1}{4}
$$

Note: $(X Y Z)$ is the area of triangle $X Y Z$.
3 Let $n>1$ be an integer. For each numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}=1$, denote $m=\min \left\{\left|x_{i}-x_{j}\right|, 0<i<j<n+1\right\}$
Find the maximum value of m.

- Day 2

4 Let a, b and c be positive integers such that $a^{2}+b^{2}+1=c^{2}$. Prove that $[a / 2]+[c / 2]$ is even.
Note: $[x]$ is the integer part of x.
5 Let $A B C$ be a triangle with $A B<A C$, let L be midpoint of arc $B C$ (the point A is not in this arc) of the circumcircle $w(A B C)$. Let E be a point in $A C$ where $A E=\frac{A B+A C}{2}$, the line $E L$ intersects w in P.
If M and N are the midpoints of $A B$ and $B C$, respectively, prove that $A L, B P$ and $M N$ are concurrents

6 Let $g(x)=a x^{2}+b x+c$ a quadratic function with real coefficients such that the equation $g(g(x))=x$ has four distinct real roots. Prove that there isn't a function $f: R--R$ such that $f(f(x))=g(x)$ for all x real

