

AoPS Community

2015 Azerbaijan JBMO TST

www.artofproblemsolving.com/community/c72498 by IstekOlympiadTeam

-	Day 1
1	With the conditions $a, b, c \in \mathbb{R}^+$ and $a + b + c = 1$, prove that
	$\frac{7+2b}{1+a} + \frac{7+2c}{1+b} + \frac{7+2a}{1+c} \ge \frac{69}{4}$
3	Acute-angled $\triangle ABC$ triangle with condition $AB < AC < BC$ has cimcumcircle C , with center O and radius R . And BD and CE diametrs drawn. Circle with center O and radius R intersects AC at K . And circle with center A and radius AD intersects BA at L . Prove that EK and DL lines intersects at circle C .
2	$A = 1 \cdot 4 \cdot 7 \cdots 2014$. Find the last non-zero digit of A if it is known that $A \equiv 1 \mod 3$.
4	Prove that there are not intgers a and b with conditions, i) $16a - 9b$ is a prime number. ii) ab is a perfect square. iii) $a + b$ is also perfect square.
-	Day 2
1	Let x, y and z be non-negative real numbers satisfying the equation $x + y + z = xyz$. Prove that $2(x^2 + y^2 + z^2) \ge 3(x + y + z)$.
2	All letters in the word $VUQAR$ are different and chosen from the set $\{1, 2, 3, 4, 5\}$. Find all solutions to the equation $\frac{(V+U+Q+A+R)^2}{V-U-Q+A+R} = V^{UQ^{AR}}.$
3	Let ABC be a triangle such that AB is not equal to AC . Let M be the midpoint of BC and H be the orthocenter of triangle ABC . Let D be the midpoint of AH and O the circumcentre of triangle BCH . Prove that $DAMO$ is a parallelogram.
-	Day 3

AoPS Community

2015 Azerbaijan JBMO TST

1
$$a, b, c \in \mathbb{R}^+$$
 and $a^2 + b^2 + c^2 = 48$. Prove that

$$a^2\sqrt{2b^3+16} + b^2\sqrt{2c^3+16} + c^2\sqrt{2a^3+16} \le 24^2$$

- **2** There are some real numbers on the board (at least two). In every step we choose two of them, for example a and b, and then we replace them with $\frac{ab}{a+b}$. We continue until there is one number. Prove that the last number does not depend on which order we choose the numbers to erase.
- **3** There is a triangle *ABC* that *AB* is not equal to *AC.BD* is interior bisector of $\angle ABC(D \in AC)$ *M* is midpoint of *CBA* arc.Circumcircle of $\triangle BDM$ cuts *AB* at *K* and *J*, is symmetry of *A* according *K*.If $DJ \cap AM = (O)$, Prove that *J*, *B*, *M*, *O* are cyclic.
- 4 Find all integer solutions to the equation $x^2 = y^2(x + y^4 + 2y^2)$.
- Additional Exam
- **1** Let *a*, *b*, *c* be positive real numbers. Prove that

$$\left((3a^2+1)^2 + 2\left(1+\frac{3}{b}\right)^2 \right) \left((3b^2+1)^2 + 2\left(1+\frac{3}{c}\right)^2 \right) \left((3c^2+1)^2 + 2\left(1+\frac{3}{a}\right)^2 \right) \ge 48^3$$

2 Find all non-negative solutions to the equation $2013^x + 2014^y = 2015^z$

2

Art of Problem Solving is an ACS WASC Accredited School.