AoPS Community

2015 Azerbaijan JBMO TST

www.artofproblemsolving.com/community/c72498
by IstekOlympiadTeam

- Day 1

1 With the conditions $a, b, c \in \mathbb{R}^{+}$and $a+b+c=1$, prove that

$$
\frac{7+2 b}{1+a}+\frac{7+2 c}{1+b}+\frac{7+2 a}{1+c} \geq \frac{69}{4}
$$

3 Acute-angled $\triangle A B C$ triangle with condition $A B<A C<B C$ has cimcumcircle C, with center O and radius R.And $B D$ and $C E$ diametrs drawn. Circle with center O and radius R intersects $A C$ at K.And circle with center A and radius $A D$ intersects $B A$ at L. Prove that $E K$ and $D L$ lines intersects at circle C.
$2 A=1 \cdot 4 \cdot 7 \cdots 2014$. Find the last non-zero digit of A if it is known that $A \equiv 1 \bmod 3$.
4 Prove that there are not intgers a and b with conditions,
i) $16 a-9 b$ is a prime number.
ii) $a b$ is a perfect square.
iii) $a+b$ is also perfect square.

- Day 2

1 Let x, y and z be non-negative real numbers satisfying the equation $x+y+z=x y z$. Prove that $2\left(x^{2}+y^{2}+z^{2}\right) \geq 3(x+y+z)$.

2 All letters in the word $V U Q A R$ are different and chosen from the set $\{1,2,3,4,5\}$. Find all solutions to the equation

$$
\frac{(V+U+Q+A+R)^{2}}{V-U-Q+A+R}=V^{U^{Q^{A R}}}
$$

3 Let $A B C$ be a triangle such that $A B$ is not equal to $A C$. Let M be the midpoint of $B C$ and H be the orthocenter of triangle $A B C$. Let D be the midpoint of $A H$ and O the circumcentre of triangle $B C H$. Prove that $D A M O$ is a parallelogram.

- Day 3

$1 a, b, c \in \mathbb{R}^{+}$and $a^{2}+b^{2}+c^{2}=48$. Prove that

$$
a^{2} \sqrt{2 b^{3}+16}+b^{2} \sqrt{2 c^{3}+16}+c^{2} \sqrt{2 a^{3}+16} \leq 24^{2}
$$

2 There are some real numbers on the board (at least two). In every step we choose two of them, for example a and b, and then we replace them with $\frac{a b}{a+b}$. We continue until there is one number. Prove that the last number does not depend on which order we choose the numbers to erase.

3 There is a triangle $A B C$ that $A B$ is not equal to $A C . B D$ is interior bisector of $\angle A B C(D \in A C)$ M is midpoint of $C B A$ arc.Circumcircle of $\triangle B D M$ cuts $A B$ at K and J, is symmetry of A according K. If $D J \cap A M=(O)$, Prove that J, B, M, O are cyclic.
$4 \quad$ Find all integer solutions to the equation $x^{2}=y^{2}\left(x+y^{4}+2 y^{2}\right)$.

- Additional Exam

1 Let a, b, c be positive real numbers. Prove that

$$
\left(\left(3 a^{2}+1\right)^{2}+2\left(1+\frac{3}{b}\right)^{2}\right)\left(\left(3 b^{2}+1\right)^{2}+2\left(1+\frac{3}{c}\right)^{2}\right)\left(\left(3 c^{2}+1\right)^{2}+2\left(1+\frac{3}{a}\right)^{2}\right) \geq 48^{3}
$$

2 Find all non-negative solutions to the equation $2013^{x}+2014^{y}=2015^{z}$

