Art of Problem Solving

AoPS Community

2018 Lusophon Mathematical Olympiad

Lusophon Mathematical Olympiad 2018

www.artofproblemsolving.com/community/c726875
by parmenides51

- Day 1

1 Fill in the corners of the square, so that the sum of the numbers in each one of the 5 lines of the square is the same and the sum of the four corners is 123.

2 In a triangle $A B C$, right in A and isosceles, let D be a point on the side $A C(A \neq D \neq C)$ and E be the point on the extension of $B A$ such that the triangle $A D E$ is isosceles. Let P be the midpoint of segment $B D, R$ be the midpoint of the segment $C E$ and Q the intersection point of $E D$ and $B C$. Prove that the quadrilateral $A R Q P$ is a square

3 For each positive integer n, let $S(n)$ be the sum of the digits of n. Determines the smallest positive integer a such that there are infinite positive integers n for which you have $S(n)-S(n+$ $a)=2018$.

- Day 2

4 Determine the pairs of positive integer numbers m and n that satisfy the equation $m^{2}=n^{2}+$ $m+n+2018$.

5 Determine the increasing geometric progressions, with three integer terms, such that the sum of these terms is 57

6 In a 3×25 board, 1×3 pieces are placed (vertically or horizontally) so that they occupy entirely 3 boxes on the board and do not have a common point.
What is the maximum number of pieces that can be placed, and for that number, how many configurations are there?

Num tabuleiro $3 \times 25 \mathrm{~s}^{\sim}$ ao colocadas pe, cas 1×3 (na vertical ou na horizontal) de modo que ocupem inteiramente 3 casas do tabuleiro e n ~ao se toquem em nenhum ponto.
Qual 'e o n'umero m'aximo de pe, cas que podem ser colocadas, e para esse n'umero, quantas configura, c^{\sim} oes existem?
source (https://www.obm.org.br/content/uploads/2018/09/Provas_OMCPLP_2018.pdf)

