Art of Problem Solving

AoPS Community

National Science Olympiad 2016

www.artofproblemsolving.com/community/c727504
by parmenides51, toedo, jokopratowo, antonbnt15_Indo

- Day 1

1 Let $A B C D$ be a cyclic quadrilateral wih both diagonals perpendicular to each other and intersecting at point O. Let E, F, G, H be the orthogonal projections of O on sides $A B, B C, C D, D A$ respectively.
a. Prove that $\angle E F G+\angle G H E=180^{\circ}$
b. Prove that $O E$ bisects angle $\angle F E H$.

2 Determine all triples of natural numbers (a, b, c) with $b>1$ such that $2^{c}+2^{2016}=a^{b}$.
3 There are 5 boxes arranged in a circle. At first, there is one a box containing one ball, while the other boxes are empty. At each step, we can do one of the following two operations:
i. select one box that is not empty, remove one ball from the box and add one ball into both boxes next to the box,
ii. select an empty box next to a non-empty box, from the box the non-empty one moves one ball to the empty box.
Is it possible, that after a few steps, obtained conditions where each box contains exactly $17^{5^{2016}}$ balls?

4 Given triangle $A B C$ such that angles A, B, C satisfy

$$
\frac{\cos A}{20}+\frac{\cos B}{21}+\frac{\cos C}{29}=\frac{29}{420}
$$

Prove that $A B C$ is right angled triangle

- Day 2

5 Given positive integers a, b, c, d such that $a \mid c^{d}$ and $b \mid d^{c}$. Prove that

$$
a b \mid(c d)^{\max (a, b)}
$$

6 For a quadrilateral $A B C D$, we call a square amazing if all of its sides(extended if necessary) pass through distinct vertices of $A B C D$ (no side passing through 2 vertices). Prove that for an arbitrary $A B C D$ such that its diagonals are not perpendicular, there exist at least 6 amazing squares

7 Suppose that $p>2$ is a prime number. For each integer $k=1,2, \ldots, p-1$, denote r_{k} as the remainder of the division k^{p} by p^{2}. Prove that $r_{1}+r_{2}+r_{3}+\ldots+r_{p-1}=\frac{p^{2}(p-1)}{2}$

8 Determine with proof, the number of permutations $a_{1}, a_{2}, a_{3}, \ldots, a_{2016}$ of $1,2,3, \ldots, 2016$ such that the value of $\left|a_{i}-i\right|$ is fixed for all $i=1,2,3, \ldots, 2016$, and its value is an integer multiple of 3 .

