Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c728414 by parmenides51, Yiwa

- \quad Paper 1

1 If the three-digit number $A B C$ is divisible by 27, prove that the three-digit numbers $B C A$ and $C A B$ are also divisible by 27 .

2 In triangle $A B C$ we have $|A B| \neq|A C|$. The bisectors of $\angle A B C$ and $\angle A C B$ meet $A C$ and $A B$ at E and F, respectively, and intersect at I. If $|E I|=|F I|$ find the measure of $\angle B A C$.

3 Do there exist four polynomials $P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)$ with real coefficients, such that the sum of any three of them always has a real root, but the sum of any two of them has no real root?
$4 \quad$ Let $A B C$ be a triangle with $|A C| \neq|B C|$. Let P and Q be the intersection points of the line $A B$ with the internal and external angle bisectors at C, so that P is between A and B. Prove that if M is any point on the circle with diameter $P Q$, then $\angle A M P=\angle B M P$.

5 Let $a_{1}, a_{2}, \ldots, a_{m}$ be positive integers, none of which is equal to 10 , such that $a_{1}+a_{2}+\ldots+a_{m}=$ 10 m . Prove that $\left(a_{1} a_{2} a_{3} \cdot \ldots \cdot a_{m}\right)^{1 / m} \leq 3 \sqrt{11}$.

- \quad Paper 2
$6 \quad$ Triangle $A B C$ has sides $a=|B C|>b=|A C|$. The points K and H on the segment $B C$ satisfy $|C H|=(a+b) / 3$ and $|C K|=(a-b) / 3$. If G is the centroid of triangle $A B C$, prove that $\angle K G H=90^{\circ}$.

7 A rectangular array of positive integers has 4 rows. The sum of the entries in each column is 20 . Within each row, all entries are distinct. What is the maximum possible number of columns?

8 Suppose a, b, c are real numbers such that $a b c \neq 0$.
Determine x, y, z in terms of a, b, c such that $b z+c y=a, c x+a z=b, a y+b x=c$.
Prove also that $\frac{1-x^{2}}{a^{2}}=\frac{1-y^{2}}{b^{2}}=\frac{1-z^{2}}{c^{2}}$.
9 Show that the number a^{3} where $a=\frac{251}{\sqrt[3]{\sqrt[352]{25} \sqrt[3]{2}}-10 \sqrt[3]{63}}+\frac{1}{\sqrt[351]{252}+5 \sqrt[3]{2}}+10 \sqrt[3]{63}$ is an integer and find its value

10 Let $A E$ be a diameter of the circumcircle of triangle $A B C$. Join E to the orthocentre, H, of $\triangle A B C$ and extend $E H$ to meet the circle again at D. Prove that the nine point circle of $\triangle A B C$
passes through the midpoint of $H D$.
Note. The nine point circle of a triangle is a circle that passes through the midpoints of the sides, the feet of the altitudes and the midpoints of the line segments that join the orthocentre to the vertices.

