AoPS Community

www.artofproblemsolving.com/community/c728415
by parmenides51

- \quad Paper 1

1 Determine, with proof, the smallest positive multiple of 99 all of whose digits are either 1 or 2 .
2 Solve the equations :

$$
\left\{\begin{array}{l}
a+b+c=0 \\
a^{2}+b^{2}+c^{2}=1 \\
a^{3}+b^{3}+c^{3}=4 a b c
\end{array}\right.
$$

for a, b, and c.
3 Four circles are drawn with the sides of quadrilateral $A B C D$ as diameters. The two circles passing through A meet again at A^{\prime}, two circles through B at B^{\prime}, two circles at C at C^{\prime} and the two circles at D at D^{\prime}. Suppose the points $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} are distinct. Prove quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is similar to $A B C D$.

4 An equilateral triangle of integer side length $n \geq 1$ is subdivided into small triangles of unit side length, as illustrated in the figure below for $n=5$. In this diagram a subtriangle is a triangle of any size which is formed by connecting vertices of the small triangles along the grid lines. https://cdn.artofproblemsolving.com/attachments/e/9/17e83ad4872fcf9e97f0479104b9569bf75ac jpg
It is desired to color each vertex of the small triangles either red or blue in such a way that there is no subtriangle with all of its vertices having the same color. Let $f(n)$ denote the number of distinct colorings satisfying this condition.
Determine, with proof, $f(n)$ for every $n \geq 1$
5 The sequence $a=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is defined by $a_{0}=0, a_{1}=2$ and

$$
a_{n+2}=2 a_{n+1}+41 a_{n}
$$

Prove that a_{2016} is divisible by 2017 .

- \quad Paper 2

1 Does there exist an even positive integer n for which $n+1$ is divisible by 5 and the two numbers $2^{n}+n$ and $2^{n}-1$ are co-prime?

3 A line segment $B_{0} B_{n}$ is divided into n equal parts at points $B_{1}, B_{2}, \ldots, B_{n-1}$ and A is a point such that $\angle B_{0} A B_{n}$ is a right angle. Prove that :

$$
\sum_{k=0}^{n}\left|A B_{k}\right|^{2}=\sum_{k=0}^{n}\left|B_{0} B_{k}\right|^{2}
$$

25 teams play in a soccer competition where each team plays one match against each of the other four teams. A winning team gains 5 points and a losing team 0 points. For a $0-0$ draw both teams gain 1 point, and for other draws ($1-1,2-2,3-3$,etc.) both teams gain 2 points. At the end of the competition, we write down the total points for each team, and we find that they form 5 consecutive integers. What is the minimum number of goals scored?

4 Show that for all non-negative numbers a, b,

$$
1+a^{2017}+b^{2017} \geq a^{10} b^{7}+a^{7} b^{2000}+a^{2000} b^{10}
$$

When is equality attained?
5 Given a positive integer m, a sequence of real numbers $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ is called m-powerful if it satisfies

$$
\left(\sum_{k=1}^{n} a_{k}\right)^{m}=\sum_{k=1}^{n} a_{k}^{m}
$$

for all positive integers n.
(a) Show that a sequence is 30-powerful if and only if at most one of its terms is non-zero.
(b) Find a sequence none of whose terms are zero but which is 2017-powerful.

