AoPS Community

www.artofproblemsolving.com/community/c728424
by parmenides51, tarzanjunior, sqing, MRF2017, basemfouda2002

- \quad Paper 1

1 Given an 8×8 chess board, in how many ways can we select 56 squares on the board while satisfying both of the following requirements:
(a) All black squares are selected.
(b) Exactly seven squares are selected in each column and in each row.

2 Prove that for $N>1$ that $\left(N^{2}\right)^{2014}-\left(N^{11}\right)^{106}$ is divisible by $N^{6}+N^{3}+1$
3 In the triangle $A B C, D$ is the foot of the altitude from A to $B C$, and M is the midpoint of the line segment $B C$. The three angles $\angle B A D, \angle D A M$ and $\angle M A C$ are all equal. Find the angles of the triangle $A B C$.

4 Three different non-zero real numbers a, b, c satisfy the equations $a+\frac{2}{b}=b+\frac{2}{c}=c+\frac{2}{a}=p$, where p is a real number. Prove that $a b c+2 p=0$.

5 Suppose $a_{1}, a_{2}, \ldots, a_{n}>0$, where $n>1$ and $\sum_{i=1}^{n} a_{i}=1$.
For each $i=1,2, \ldots, n$, let $b_{i}=\frac{a_{i}^{2}}{\sum_{j=1}^{n} a_{j}^{2}}$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i}}{1-a_{i}} \leq \sum_{i=1}^{n} \frac{b_{i}}{1-b_{i}} .
$$

When does equality occur?

- Paper 2

6 Each of the four positive integers $N, N+1, N+2, N+3$ has exactly six positive divisors. There are exactly 20 di erent positive numbers which are exact divisors of at least one of the numbers. One of these is 27 . Find all possible values of N.(Both 1 and m are counted as divisors of the number m.)

7 The square $A B C D$ is inscribed in a circle with center O. Let E be the midpoint of $A D$. The line $C E$ meets the circle again at F. The lines $F B$ and $A D$ meet at H. Prove $H D=2 A H$

8 (a) Let a_{0}, a_{1}, a_{2} be real numbers and consider the polynomial $P(x)=a_{0}+a_{1} x+a_{2} x^{2}$.
Assume that $P(-1), P(0)$ and $P(1)$ are integers.

Prove that $P(n)$ is an integer for all integers n.
(b) Let $a_{0}, a_{1}, a_{2}, a_{3}$ be real numbers and consider the polynomial $Q(x)=a 0+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$. Assume that there exists an integer i such that $Q(i), Q(i+1), Q(i+2)$ and $Q(i+3)$ are integers. Prove that $Q(n)$ is an integer for all integers n.
$9 \quad$ Let n be a positive integer and a_{1}, \ldots, a_{n} be positive real numbers.
Let $g(x)$ denote the product $\left(x+a_{1}\right) \cdot \ldots \cdot\left(x+a_{n}\right)$.
Let a_{0} be a real number and let $f(x)=\left(x-a_{0}\right) g(x)=x^{n+1}+b_{1} x^{n}+b_{2} x^{n-1}+\ldots+b_{n} x+b_{n+1}$. Prove that all the coeffcients $b_{1}, b_{2}, \ldots, b_{n+1}$ of the polynomial $f(x)$ are negative if and only if $a_{0}>a_{1}+a_{2}+\ldots+a_{n}$.

10 Over a period of k consecutive days, a total of 2014 babies were born in a certain city, with at least one baby being born each day. Show that:
(a) If $1014<k \leq 2014$, there must be a period of consecutive days during which exactly 100 babies were born.
(b) By contrast, if $k=1014$, such a period might not exist.

