AoPS Community

www.artofproblemsolving.com/community/c728737
by parmenides51, Dheckob, sqing

- \quad Paper 1

1 Find the smallest positive integer m such that $5 m$ is an exact 5 th power, $6 m$ is an exact 6 th power, and $7 m$ is an exact 7th power.

2 Prove that

$$
1-\frac{1}{2012}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2013}\right) \geq \frac{1}{\sqrt[2012]{2013}}
$$

3 The altitudes of a triangle $\triangle A B C$ are used to form the sides of a second triangle $\triangle A_{1} B_{1} C_{1}$. The altitudes of $\triangle A_{1} B_{1} C_{1}$ are then used to form the sides of a third triangle $\triangle A_{2} B_{2} C_{2}$. Prove that $\triangle A_{2} B_{2} C_{2}$ is similar to $\triangle A B C$.

4 Each of the 36 squares of a 6×6 table is to be coloured either Red, Yellow or Blue.
(a) No row or column is contain more than two squares of the same colour.
(b) In any four squares obtained by intersecting two rows with two columns, no colour is to occur exactly three times.
In how many di erent ways can the table be coloured if both of these rules are to be respected?
$5 \quad A, B$ and C are points on the circumference of a circle with centre O. Tangents are drawn to the circumcircles of triangles $O A B$ and $O A C$ at P and Q respectively, where P and Q are diametrically opposite O. The two tangents intersect at K. The line $C A$ meets the circumcircle of $\triangle O A B$ at A and X. Prove that X lies on the line $K O$.

- \quad Paper 2

6 The three distinct points B, C, D are collinear with C between B and D. Another point A not on the line $B D$ is such that $|A B|=|A C|=|C D|$. Prove that $\angle B A C=36^{\circ}$ if and only if

$$
\frac{1}{|C D|}-\frac{1}{|B D|}=\frac{1}{|C D|+|B D|} .
$$

7 Consider the collection of different squares which may be formed by sets of four points chosen from the 12 labelled
points in the diagram on the right. For each possible area such a square may have, determine the number of squares which have this area. Make sure to explain why your list is complete.
https://cdn.artofproblemsolving.com/attachments/b/a/faf00c2faa7b949ab2894942f8bd99505543є png

8 Find the smallest positive integer N for which the equation $\left(x^{2}-1\right)\left(y^{2}-1\right)=N$ is satis ed by at least two pairs of integers (x, y) with $1<x \leq y$.

9 We say that a doubly infinite sequence $\ldots, s_{-2}, s_{-1}, s_{0}, s_{1}, s_{2}, \ldots$ is subaveraging if $s_{n}=\frac{s_{n-1}+s_{n+1}}{4}$ for all integers n.
(a) Find a subaveraging sequence in which all entries are different from each other. Prove that all entries are indeed distinct.
(b) Show that if $\left(s_{n}\right)$ is a subaveraging sequence such that there exist distinct integers m, n such that $s_{m}=s_{n}$, then there are infinitely many pairs of distinct integers i, j with $s_{i}=s_{j}$.

10 Let a, b, c be real numbers and let $x=a+b+c, y=a^{2}+b^{2}+c^{2}, z=a^{3}+b^{3}+c^{3}$ and $S=2 x^{3}-9 x y+9 z$. (a) Prove that S is unchanged when a, b, c are replaced by $a+t, b+t, c+t$, respectively, for any real number t. (b) Prove that $\left(3 y-x^{2}\right)^{3} \geq S^{2}$.

