Art of Problem Solving

AoPS Community

2018 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 2018

www.artofproblemsolving.com/community/c728743
by gobathegreat, math90, Muradjl, fastlikearabbit

Day 1 April 21st

1 In acute triangle $A B C(A B<A C)$ let D, E and F be foots of perpedicular from A, B and C to $B C, C A$ and $A B$, respectively. Let P and Q be points on line $E F$ such that $D P \perp E F$ and $B Q=C Q$. Prove that $\angle A D P=\angle P B Q$

2 Let $a_{1}, a_{2}, \ldots a_{n}, k$, and M be positive integers such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=k \quad \text { and } \quad a_{1} a_{2} \cdots a_{n}=M
$$

If $M>1$, prove that the polynomial

$$
P(x)=M(x+1)^{k}-\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)
$$

has no positive roots.
3 Find all values of positive integers a and b such that it is possible to put a ones and b zeros in every of vertices in polygon with $a+b$ sides so it is possible to rotate numbers in those vertices with respect to primary position and after rotation one neighboring 0 and 1 switch places and in every other vertices other than those two numbers remain the same.

Day 2 April 22nd
4 Every square of 1000×1000 board is colored black or white. It is known that exists one square 10×10 such that all squares inside it are black and one square 10×10 such that all squares inside are white. For every square $K 10 \times 10$ we define its power $m(K)$ as an absolute value of difference between number of white and black squares 1×1 in square K. Let T be a square 10×10 which has minimum power among all squares 10×10 in this board. Determine maximal possible value of $m(T)$
$5 \quad$ Let $p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index i in the set $\{0,1,2, \ldots, p-1\}$ that was not chosen before by either of the two players and then chooses an element a_{i} from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen. Then the following number is computed:

$$
M=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{p-1} 10^{p-1}=\sum_{i=0}^{p-1} a_{i} \cdot 10^{i}
$$

The goal of Eduardo is to make M divisible by p, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
Proposed by Amine Natik, Morocco
6 Let O be the circumcenter of an acute triangle $A B C$. Line $O A$ intersects the altitudes of $A B C$ through B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle $P Q H$ lies on a median of triangle $A B C$.

