AoPS Community

2004 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 2004

www.artofproblemsolving.com/community/c729472
by gobathegreat

- Day 1
$1 \quad$ Circle k with center O is touched from inside by two circles in points S and T, respectively. Let those two circles intersect at points M and N, such that N is closer to line $S T$. Prove that $O M$ and $M N$ are perpendicular iff S, N and T are collinear

2 Determine whether does exists a triangle with area 2004 with his sides positive integers.
3 Let a, b and c be positive real numbers such that $a b c=1$. Prove the inequality: $\frac{a b}{a^{5}+b^{5}+a b}+$ $\frac{b c}{b^{5}+c^{5}+b c}+\frac{a c}{c^{5}+a^{5}+a c} \leq 1$

- Day 2

4 On competition which has 16 teams, it is played 55 games. Prove that among them exists 3 teams such that they have not played any matches between themselves.
$5 \quad$ For $0 \leq x<\frac{\pi}{2}$ prove the inequality: $a^{2} \tan (x) \cdot(\cos (x))^{\frac{1}{3}}+b^{2} \sin x \geq 2 x a b$ where a and b are real numbers.

6 It is given triangle $A B C$ and parallelogram $A S C R$ with diagonal $A C$. Let line constructed through point B parallel with $C S$ intersects line $A S$ and $C R$ in M and P, respectively. Let line constructed through point B parallel with $A S$ intersects line $A R$ and $C S$ in N and Q, respectively. Prove that lines $R S, M N$ and $P Q$ are concurrent

