Art of Problem Solving

AoPS Community

2018 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation of Bosnia and Herzegovina 2018

www.artofproblemsolving.com/community/c731812
by gobathegreat

- \quad Sarajevo, March 24th
- \quad Grade 9

1 if a, b and c are real numbers such that $(a-b)(b-c)(c-a) \neq 0$, prove the equality: $\frac{b^{2} c^{2}}{(a-b)(a-c)}+$ $\frac{c^{2} a^{2}}{(b-c)(b-a)}+\frac{a^{2} b^{2}}{(c-a)(c-b)}=a b+b c+c a$

2 Determine all triplets (a, b, c) of real numbers such that sets $\left\{a^{2}-4 c, b^{2}-2 a, c^{2}-2 b\right\}$ and $\{a-c, b-4 c, a+b\}$ are equal and $2 a+2 b+6=5 c$. In every set all elements are pairwise distinct
$3 \quad$ Let p and q be prime numbers such that $p^{2}+p q+q^{2}$ is perfect square. Prove that $p^{2}-p q+q^{2}$ is prime

4 Prove that among arbitrary 13 points in plane with coordinates as integers, such that no three are collinear, we can pick three points as vertices of triangle such that its centroid has coordinates as integers.
$5 \quad$ Let H be an orhocenter of an acute triangle $A B C$ and M midpoint of side $B C$. If D and E are foots of perpendicular of H on internal and external angle bisector of angle $\angle B A C$, prove that M, D and E are collinear

- \quad Grade 10

1 Show that system of equations $2 a b=6(a+b)-13 a^{2}+b^{2}=4$ has not solutions in set of real numbers.

2 Find all positive integers n such that number $n^{4}-4 n^{3}+22 n^{2}-36 n+18$ is perfect square of positive integer

3 Solve equation $x\lfloor x\rfloor+\{x\}=2018$, where x is real number
4 Let P be a point on circumcircle of triangle $A B C$ on $\operatorname{arc} \overparen{B C}$ which does not contain point A. Let lines $A B$ and $C P$ intersect at point E, and lines $A C$ and $B P$ intersect at F. If perpendicular bisector of side $A B$ intersects $A C$ in point K, and perpendicular bisector of side $A C$ intersects side $A B$ in point J, prove that: $\left(\frac{C E}{B F}\right)^{2}=\frac{A J \cdot J E}{A K \cdot K F}$

AoPS Community

5 Board with dimesions 2018×2018 is divided in unit cells 1×1. In some cells of board are placed black chips and in some white chips (in every cell maximum is one chip). Firstly we remove all black chips from columns which contain white chips, and then we remove all white chips from rows which contain black chips. If W is number of remaining white chips, and B number of remaining black chips on board and $A=\min \{W, B\}$, determine maximum of A

- \quad Grade 11

1 Find all values of real parameter a for which equation $2 \sin ^{4}(x)+\cos ^{4}(x)=a$ has real solutions

2 Let $a_{1}, a_{2}, \ldots, a_{2018}$ be a sequence of numbers such that all its elements are elements of a set $\{-1,1\}$. Sum

$$
S=\sum_{1 \leq i<j \leq 2018} a_{i} a_{j}
$$

can be negative and can also be positive. Find the minimal value of this sum
3 In triangle $A B C$ given is point P such that $\angle A C P=\angle A B P=10^{\circ}, \angle C A P=20^{\circ}$ and $\angle B A P=$ 30°. Prove that $A C=B C$

4 We observe that number $10001=73 \cdot 137$ is not prime. Show that every member of infinite sequence $10001,100010001,1000100010001, \ldots$ is not prime

5 It is given 2018 points in plane. Prove that it is possible to cover them with circles such that: i) sum of lengths of all diameters of all circles is not greater than 2018 ii) distance between any two circles is greater than 1

- \quad Grade 12

1 a) Prove that for all positive integers $n \geq 3$ holds:

$$
\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n-1}=2^{n}-2
$$

where $\binom{n}{k}$, with integer k such that $n \geq k \geq 0$, is binomial coefficent
b) Let $n \geq 3$ be an odd positive integer. Prove that set $A=\left\{\binom{n}{1},\binom{n}{2}, \ldots,\binom{n-1}{\frac{n}{2}}\right\}$ has odd number of odd numbers

2 Problem 4 from grade 11

3 If numbers $x_{1}, x_{2}, \ldots, x_{n}$ are from interval $\left(\frac{1}{4}, 1\right)$ prove the inequality: $\log _{x_{1}}\left(x_{2}-\frac{1}{4}\right)+\log _{x_{2}}\left(x_{3}-\frac{1}{4}\right)+$ $\ldots+\log _{x_{n-1}}\left(x_{n}-\frac{1}{4}\right)+\log _{x_{n}}\left(x_{1}-\frac{1}{4}\right) \geq 2 n$

4 Let $A B C D$ be a cyclic quadrilateral and let k_{1} and k_{2} be circles inscribed in triangles $A B C$ and $A B D$. Prove that external common tangent of those circles (different from $A B$) is parallel with $C D$

5 Problem 5 from grade 11

