Art of Problem Solving

AoPS Community

2017 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation of Bosnia and Herzegovina 2017

www.artofproblemsolving.com/community/c732292
by gobathegreat

- Bugojno, April 1 st
- \quad Grade 9

1 Let a, b and c be real numbers such that $a b c(a+b)(b+c)(c+a) \neq 0$ and $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=$ $\frac{1007}{1008}$
Prove that $\frac{a b}{(a+c)(b+c)}+\frac{b c}{(b+a)(c+a)}+\frac{c a}{(c+b)(a+b)}=2017$
2 Prove that numbers $1,2, \ldots, 16$ can be divided in sequence such that sum of any two neighboring numbers is perfect square

3 Does there exist positive integer n such that sum of all digits of number $n(4 n+1)$ is equal to 2017

4 It is given isosceles triangle $A B C(A B=A C)$ such that $\angle B A C=108^{\circ}$. Angle bisector of angle $\angle A B C$ intersects side $A C$ in point D, and point E is on side $B C$ such that $B E=A E$. If $A E=m$, find $E D$

- \quad Grade 10

1 If a is real number such that x_{1} and $x_{2}, x_{1} \neq x_{2}$, are real numbers and roots of equation $x_{2}-x+a=0$. Prove that $\left|x_{1}{ }^{2}-x_{2}{ }^{2}\right|=1$ iff $\left|x_{1}{ }^{3}-x_{2}{ }^{3}\right|=1$

2 It is given triangle $A B C$. Let internal and external angle bisector of angle $\angle B A C$ intersect line $B C$ in points D and E, respectively, and circumcircle of triangle $A D E$ intersects line $A C$ in point F. Prove that $F D$ is angle bisector of $\angle B F C$

3 Find prime numbers p, q, r and s, pairwise distinct, such that their sum is prime number and numbers $p^{2}+q r$ and $p^{2}+q s$ are perfect squares

4 Let S be a set of n distinct real numbers, and A_{S} set of arithemtic means of two distinct numbers from S. For given $n \geq 2$ find minimal number of elements in A_{S}

- \quad Grade 11

1 In terms of real parameter a solve inequality: $\log _{a} x+\left|a+\log _{a} x\right| \cdot \log _{\sqrt{x}} a \geq a \log _{x} a$ in set of real numbers

2 Let $A B C$ be an isosceles triangle such that $A B=A C$. Find angles of triangle $A B C$ if $\frac{A B}{B C}=$ $1+2 \cos \frac{2 \pi}{7}$

3 Let S be a set of 6 positive real numbers such that $(a, b \in S)(a>b) \Rightarrow a+b \in S$ or $a-b \in S$ Prove that if we sort these numbers in ascending order, then they form an arithmetic progression

4 It is given positive integer N. Let $d_{1}, d_{2}, \ldots, d_{n}$ be its divisors and let a_{i} be number of divisors of $d_{i}, i=1,2, \ldots n$. Prove that

$$
\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}=a_{1}^{3}+a_{2}^{3}+\ldots+a_{n}{ }^{3}
$$

- \quad Grade 12

1 Problem 1 for grade 11
2 In triangle $A B C$ on side $A C$ are points K, L and M such that $B K$ is an angle bisector of $\angle A B L$, $B L$ is an angle bisector of $\angle K B M$ and $B M$ is an angle bisector of $\angle L B C$, respectively. Prove that $4 \cdot L M<A C$ and $3 \cdot \angle B A C-\angle A C B<180^{\circ}$

$3 \quad$ Problem 4 for grade 11

4 How many knights you can put on chess table 5×5 such that every one of them attacks exactly two other knights ?

