AoPS Community

Bosnia and Herzegovina European Girls Mathematical Olympiad TST 2017

www.artofproblemsolving.com/community/c732426
by gobathegreat

- \quad Sarajevo, February 25th

1 It is given sequence wih length of 2017 which consists of first 2017 positive integers in arbitrary order (every number occus exactly once). Let us consider a first term from sequence, let it be k. From given sequence we form a new sequence of length 2017, such that first k elements of new sequence are same as first k elements of original sequence, but in reverse order while other elements stay unchanged. Prove that if we continue transforming a sequence, eventually we will have sequence with first element 1.

2 It is given triangle $A B C$ and points P and Q on sides $A B$ and $A C$, respectively, such that $P Q \|$ $B C$. Let X and Y be intersection points of lines $B Q$ and $C P$ with circumcircle k of triangle $A P Q$, and D and E intersection points of lines $A X$ and $A Y$ with side $B C$. If $2 \cdot D E=B C$, prove that circle k contains intersection point of angle bisector of $\angle B A C$ with $B C$
$3 \quad$ For positive integer n we define $f(n)$ as sum of all of its positive integer divisors (including 1 and n). Find all positive integers c such that there exists strictly increasing infinite sequence of positive integers $n_{1}, n_{2}, n_{3}, \ldots$ such that for all $i \in \mathbb{N}$ holds $f\left(n_{i}\right)-n_{i}=c$

4 Let a, b, c, d and e be distinct positive real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=a b+$ $a c+a d+a e+b c+b d+b e+c d+c e+d e a)$ Prove that among these 5 numbers there exists triplet such that they cannot be sides of a triangle b) Prove that, for a), there exists at least 6 different triplets

